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PRÓLOGO





El último psicólogo del mundo murió en 2097. Para entonces, las inteligencias 
artificiales ya eran capaces de diagnosticar trastornos emocionales con una precisión 
del 99,8 %, diseñar intervenciones personalizadas en cuestión de segundos y ofrecer 
terapia en cualquier idioma, las 24 horas del día. Nadie necesitaba un psicólogo hu-
mano. O al menos, eso creían…

Imaginen un futuro donde los bots conversacionales sean los primeros en de-
tectar síntomas de dislexia o disgrafía, donde el análisis de grandes volúmenes de 
datos anticipe conductas suicidas antes de que ocurran o donde los psicólogos tra-
bajen codo a codo con inteligencias artificiales. Codo con codo como sinónimo de 
intersección, no de automatización. Ese futuro no está lejos. De hecho, ya está aquí. 

Con este escenario de ciencia, de ficción y de ciencia ficción, podríamos arran-
car una lección magistral sobre Historia de la Psicología sin ni siquiera cambiar de 
siglo. Pero la historia de la Psicología y los Sistemas Inteligentes no es una historia 
de reemplazo, sino de evolución. Futuros psicólogos, profesionales de la psicología, 
mucho se habla de estudios pioneros y reflexiones necesarias, pero el presente texto, 
que tengo el honor de prologar, sin duda lo es. Y llega en un momento crítico, cuan-
do estamos en ese punto de inflexión en el que o aprendemos a integrar los sistemas 
inteligentes en nuestra disciplina o corremos el riesgo de quedarnos atrás. 

Al respecto, son muchos los interrogantes que se le plantean a los profesionales 
de la psicología y se le deben plantear a los futuros psicólogos: ¿Puede una máqui-
na entender la mente humana? ¿Podemos enseñarle a una inteligencia artificial a 
reconocer emociones, predecir conductas o incluso apoyar terapias psicológicas? Y 
aún más los que resuelve y (re)plantea este texto a través de sus diferentes capítu-
los. Tanto si te has planteado estas cuestiones como si no, estás en lugar adecuado. 
Este manual, que probablemente no tengas entre tus manos, sino entre tus pixeles, 
explora la intersección entre psicología y Tecnología, un territorio fascinante donde 
lo humano y lo artificial se entrelazan más que nunca. Y lo hace de una forma acce-
sible, precisa y fiable, tal como nos tienen acostumbrados sus autores en sus trabajos 
y estudios previos. En este sentido, no puedo dejar de poner en valor la colabora-
ción entre el Departamento de Ciencias de la Salud y el de Ingeniería Informática, 
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coordinada por la Dra. Sáiz Manzanares, para acometer la ardua tarea de realizar un 
recorrido integral por los principales sistemas inteligentes aplicados a la Psicología.

Respecto al contenido, el presente manual tiene un sólido enfoque en la apli-
cación de la inteligencia artificial a la psicología, cubriendo desde fundamentos teó-
ricos hasta herramientas prácticas acerca de bots, eye tracking, minería de datos y 
Machine Learning. Pero además de ser un texto ágil y didáctico, al final de cada 
capítulo se sugieren actividades prácticas y preguntas de autoevaluación que, a dife-
rencia de otras referencias, posibilita el saber cómo y no solo el saber qué.

Pero no solo se trata de este manual, sino de la propia incorporación de la asig-
natura «Sistemas Inteligentes Aplicados a la Psicología» en el Grado en Psicología, 
absolutamente pionera en la formación de los psicólogos dentro del sistema educa-
tivo español, que responde a la necesidad de formar futuros profesionales en el uso 
y aplicación de la Inteligencia Artificial y otras tecnologías avanzadas dentro del 
ámbito de la salud en general, y de la mental en particular. Una iniciativa que repre-
senta tanto un desafío como una oportunidad. La convergencia entre las Ciencias 
de la Salud y las Ciencias de la Computación abre un sinfín de posibilidades en el 
análisis de datos, la automatización de procesos y el desarrollo de herramientas para 
la evaluación, intervención y tratamiento. Sin embargo, también implica un cambio 
de paradigma en la formación de los psicólogos y resto de profesionales de salud, 
quienes deben adquirir competencias en el uso de sistemas inteligentes sin perder de 
vista el componente humano y ético de su profesión. Este texto se ha atrevido a con-
tribuir sustancialmente a este giro copernicano en la formación de nuestros futuros 
psicólogos.

Cuando recibí la invitación para prologar este libro recordé las palabras de 
uno mis profesores: - Un prólogo debe ser breve y conciso, pero lo suficientemente 
disruptivo como para que el lector quiera seguir leyendo-. En este sentido, teniendo 
en cuenta la temática que aborda y la trayectoria de la coordinadora y los autores 
del manual, este libro podría haber visto la luz sin prólogo. Sin embargo, quisiera 
animar a los estudiantes de psicología a que se adentren en estas páginas. Los insto a 
abordar la relación entre la Ciencia del Comportamiento y la de la Computación con 
curiosidad y apertura. La interacción entre Psicología y Sistemas Inteligentes no solo 
ampliará su comprensión del comportamiento humano, sino que también les dotará 
de herramientas únicas para afrontar los desafíos del futuro. Es bien sabido que la 
Psicología, como disciplina, ha evolucionado constantemente en su búsqueda por 
comprender la mente y el comportamiento humano. Como lo es también que la tec-
nología lo ha hecho en su búsqueda por aprender de la mente y del comportamiento 
humano. Pero no solo eso, sino que está redefiniendo la forma en que entendemos 
la mente humana, y la mente humana está siendo redefinida por la tecnología, los 
profesionales que sepan integrar ambas disciplinas con criterio y ética estarán en 
la vanguardia del siglo XXI. Y por qué no, también mejor situados en un mercado 
laboral cambiante y trepidante. 
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Reinterpretando a Publio Terencio, a este manual, nada de lo psicológico ni de 
lo tecnológico le es ajeno. Es una invitación a mirar el futuro de la Psicología desde 
la tecnología y descubrir cómo está redefiniendo nuestra comprensión del comporta-
miento humano. Os animo a descubrirlo desde estas páginas, convencida de que se 
convertirá en una referencia fundamental para quienes deseen explorar el apasionan-
te mundo de los sistemas inteligentes aplicados a la Psicología.

Rebeca Cerezo Menéndez
Departamento de Psicología 

Grupo de Investigación ADIR 
Universidad de Oviedo

Más información enlace

https://portalinvestigacion.uniovi.es/investigadores/216985/detalle




INTRODUCCIÓN





Dentro de la asignatura «Sistemas Inteligentes Aplicados a la Psicología» del 
Grado en Psicología de la Universidad de Burgos, se abordará la aplicación de los 
llamados «Sistemas Inteligentes» al ámbito de la psicología educativa y clínica. El 
objetivo es analizar la utilidad de estos sistemas tanto en los procesos de diagnóstico 
como en los de intervención con distintos usuarios (alumnado o pacientes).

En primer lugar, se examinará el concepto de «Sistemas Inteligentes»; seguida-
mente, el de «Inteligencia Artificial»; y, a continuación, la utilización de los sistemas 
inteligentes aplicados al análisis del comportamiento humano. Finalmente, se traba-
jará con técnicas de «Machine Learning» (aprendizaje automático), tanto supervisa-
das como no supervisadas, aplicadas al análisis e interpretación de datos registrados 
en distintos dispositivos para la comprensión del comportamiento humano.





TEMA 1

CONCEPTO DE SISTEMAS 
INTELIGENTES 

María Consuelo Sáiz Manzanares
Departamento de Ciencias de la Salud 

Facultad de Ciencias de la Salud 
Universidad de Burgos

Álvar Arnaiz González
Departamento de Ingeniería Informática 

Escuela Politécnica Superior 
Universidad de Burgos





Los sistemas inteligentes hacen referencia a los avances de la industria 4.0 
y 5.0. Estos tienen como objetivo la mejora de los procesos de automatización y 
optimización aplicados a distintos contextos. Dentro de los sistemas inteligentes 
se incluyen la Inteligencia Artificial (IA), la robótica, el Internet de las cosas 
(Internet of Things -IoT-) y el análisis de gran volumen de datos. Actualmente, 
la industria 5.0 hace referencia a todos los avances conseguidos con la indus-
tria 4.0 aplicados especialmente a la interacción hombre-máquina. La idea ge-
neral es la de mejorar los procesos de automatización y facilitar la vida humana. 
Específicamente, la industria 5.0 pone un énfasis importante en la fabricación de 
sistemas cognitivos que aprendan de sus propios errores y que apliquen sistemas 
metacognitivos de reflexión, es lo que se ha denominado Inteligencia Artificial 
Generativa. Estos conceptos son independientes entre ellos, si bien pueden tener 
interrelación en un espacio de simbiosis colaborativa exitosa.

1.1.	 Concepto de Inteligencia Artificial

Siguiendo a Arnaiz González (2024 p. 229- 230) la IA se puede definir 
como el estudio de los métodos computacionales que pueden hacer posible per-
cibir, razonar y actuar (Winston, 1992). En un sentido más amplio, se asume que 
la IA estudia los procesos que permiten a las máquinas tener comportamientos 
que se observan en la inteligencia humana (Maddox et al., 2019). En general, se 
entiende que el propósito de la IA es desarrollar: modelos conceptuales, procedi-
mientos de reescritura formal de dichos modelos y desarrollar estrategias de pro-
gramación y máquinas físicas que reproduzcan las tareas cognitivas de los sis-
temas biológicos que se consideran inteligentes (Mira et al., 1995). En la última 
década, los avances en la IA han conseguido superar a los humanos en diversas 
tareas que antes se suponían computacionalmente intratables. Los avances de los 
últimos tiempos en el campo han sido posibles gracias al incremento exponencial 
de la información disponible (grandes bases de datos de las que aprender), com-
binado con nuevos algoritmos y optimizaciones (Došilović et al., 2018).

Uno de los problemas que se achaca a algunos de los métodos y algoritmos 
de IA es su interpretabilidad y su falta de transparencia (Markus et al., 2021). 
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Es frecuente que los mejores métodos (los más precisos) funcionen como cajas 
negras en las que, a partir de una entrada ofrecen una salida/predicción, pero 
resulta complicado o imposible poder determinar cómo el sistema ha llegado a 
dicha conclusión. Por ello, la IA explicable (explainable AI) ha cobrado especial 
interés en la comunidad, especialmente cuando estos métodos se desean utilizar 
en ámbitos médicos y relacionados con la salud. Para la interpretabilidad y expli-
cabilidad de los métodos, se suelen identificar dos categorías: interpretabilidad 
integrada (basados en transparencia) y post-hoc (Došilović et al., 2018).

1.2.	 Inteligencia Artificial e Inteligencia humana desde un paralelismo de 
funcionamiento

En las últimas décadas la base teórica de la explicación de la IA se funda-
menta en el funcionamiento del concepto de «inteligencia» en el ser humano 
(Sáiz-Manzanares, 1994). Este referente ayuda en el diseño de los algoritmos 
aplicados dentro de la IA (Sáiz-Manzanares, 2019). La idea es la de incrementar 
el nivel de autonomía de los sistemas inteligentes. Seguidamente, se van a expo-
ner las teorías más representativas sobre el concepto de «inteligencia humana». 
A continuación, se hará referencia a la aplicación de alguna de ella al concepto 
de IA.

1.2.1.	Teoría Cognitiva de la inteligencia humana

El homo sapiens se diferencia del resto de los primates no humanos por 
su capacidad de pensar y de transmitir el pensamiento a través del lenguaje. 
Siguiendo a Vygotsky (1962) el lenguaje se puede entender como un vehículo 
privilegiado de cognición. A lo largo de la historia de la Psicología han existido 
distintas teorías que han intentado explicar el funcionamiento de la inteligencia 
humana. En alguna de ellas este constructo se entiende adquirido desde el naci-
miento en la carga genética. Por ello, se concibe como un constructo inamovible. 
No obstante, sobre los años ochenta del siglo pasado distintas corrientes aboga-
ron por la «modificabilidad cognitiva» otorgando a la inteligencia la posibilidad 
de cambio y de transformación. Entre estas destacan las teorías de Feuerstein 
(1980), Sternberg (1987; 1990) y las de la Escuela de Ginebra (Doise y Mugny, 
1979; Flavell, 1993). La conceptualización de la inteligencia humana con posi-
bilidad de cambio abrió el camino a un aspecto esencial en el estudio del conoci-
miento humano que es el de la modificabilidad cognitiva, este se entiende como 
una transformación de las habilidades cognitivas a través del entrenamiento. En 
este entono, distintos autores realizaron propuestas de programas de entrena-
miento cognitivo, entre ellos destacan Feuerstein (1980), Bash y Camp (1985), 
Camp et al., (1985), Meichenbaum (1977), Meichenbaum y Goodman (1969; 
1971). Esta forma de entender la inteligencia se apoyaría en la similitud entre 
la forma de funcionamiento del cerebro humano y el funcionamiento del orde-
nador, y se denomina teoría cognitiva del procesamiento de la información. 
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Esta tendencia trata de explicar cómo el ser humano procesa información durante 
la resolución de tareas o de problemas. Esta línea de estudio e investigación ha 
tenido diversas derivadas y corrientes. Se parte de la idea de que la mente es 
computacional y puede estar mediatizada por las interacciones del sujeto con el 
medio, tanto con objetos como con iguales (Frawley, 1999).

Específicamente, la ciencia cognitiva puede entenderse desde dos corrien-
tes en principio opuestas, la representativa y la conexionista. La primera hace 
referencia a considerar que la mente se compone de subsistemas, en dominios 
cognitivos delimitados. De otro lado, la segunda refiere a entender la mente 
como un sistema de red asociativa de emparejamiento de patrones. Estas son dos 
arquitecturas diferentes que convergen en «cuatro áreas: el código interno (na-
turaleza y función de la representación mental), el procesamiento (estructura de 
datos y mecanismos de procesamiento), la arquitectura (la mente como formato 
de competencias), y el hardware (el sustrato nervioso o wetware)» (Frawley, 
1999 p. 93).

Asimismo, los procesos de razonamiento pueden dividirse en procesos reso-
lutivos (estos son los aplicados durante la resolución de problemas que implican 
la utilización del pensamiento hipotético-deductivo) y los procesos ejecutivos 
implicados en la resolución de tareas o de problemas para su comprensión [estos 
hacen referencia a los «metacomponentes» (Sternberg, 1986)].

En este entorno la psicología cognitiva se centraría en el ámbito del proce-
samiento de la información. La teoría más tradicional del procesamiento de la 
información refiere el procesamiento de forma semejante a programas de sof-
tware y modelos más actualizados refieren conceptos más molares de organiza-
ción relativamente permanentes del conocimiento desde una teoría de esquemas 
(Riviére, 2003). Sin embargo, no existe una definición consensuada de sujeto 
cognitivo. Si se atiende al modelo asociacionista clásico, éste se fundamentaría 
en el modelo de la memoria de asociación de Anderson y Bower (2014) que 
subyace al modelo de los sistemas de producciones de Newell y Simon (1972). 
Este modelo parte de la idea de un procesador central multipropósito y una me-
moria con límites (Memoria a Corto Plazo -MCP-), más una memoria de trabajo 
(recursos limitados de atención). De otro lado, Fodor (1986) propuso un modelo 
basado en una arquitectura más funcional del sistema cognitivo dentro de un 
modelo computacional representacional. Su idea era que la mente se constitu-
ye en módulos o dominios. Estos tienen una función diferenciada que es la de 
analizar las entradas o inputs de la información que serían mecanismos inferen-
ciales que presuponen una memoria de registros sensoriales y de registros del 
lenguaje relacionados con las funciones cognitivas que son accesibles. Estas se 
explicarían desde la existencia de esquemas que estarían relacionados con la 
comprensión y que podrían construir representaciones de output de profundi-
dad variable como ocurre en los procesos de razonamiento. Siguiendo a Riviére 
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(2003) «Ciertamente, ni las relaciones de buena vecindad entre la psicología y la 
inteligencia artificial, ni la fría descripción del sujeto de conocimiento como una 
especie de gramática genéticamente definida, ni el arrinconamiento de la psico-
logía entre la lógica y la biología, permiten salir de un cierto recinto solipsista al 
que parece condenada la psicología cognitiva.» Riviére (2003, p. 19).

Atendiendo a lo anterior, parece más probable que exista tanto una parte 
modular como una parte de asociación respecto de la información nueva en in-
teracción con la información que ya se tiene a nivel cognitivo. En este proceso, 
entrarían en juego elementos perceptivos, atencionales, de almacenamiento y de 
interrelación de la información. Asimismo, dentro de este proceso probablemen-
te la información previa (conocimientos previos) tendrá un papel relevante res-
pecto del procesamiento de la información nueva. Además, habría que considerar 
el momento evolutivo del sujeto (sensoriomotor, preoperacional, operacional u 
operatorio formal). Por ello, hay que tener en cuenta que la forma de pensar 
cambia a lo largo del ciclo vital. En este contexto la tarea de saber cómo fun-
ciona la mente humana es ardua, compleja y actualmente no se tiene una única 
definición ni explicación del proceso (Carretero y Asensio, 2008). Siguiendo a 
Kitchener (1983) citado por Carretero y Asensio (2008 p. 52-53) se podrían dife-
renciar tres niveles de procesamiento cognitivo. En un primer nivel los sujetos 
se ocuparían de tareas cognitivas como percibir, ordenar, memorizar, adquirir 
lenguaje, leer, etc. En un segundo nivel aparecerían las estrategias metacog-
nitivas (estas hacen referencia a la reflexión sobre la propia cognición) y en un 
tercer nivel la reflexión incrementaría el análisis sobre los límites de la propia 
conciencia logrando un pensamiento alternativo.

De igual modo, en el ámbito de la ciencia cognitiva existen diversos para-
digmas y actualmente la psicología establece una prioridad de unos sobre otros. 
Por ello, en esta asignatura se va a utilizar un paradigma mixto.

Los estudios sobre metacognición tienen dos referentes importantes. De 
un lado, los trabajos de Flavell (1979). Estos relacionan la metacognición con el 
conocimiento declarativo (conocimiento metacognitivo, «saber qué») y cono-
cimiento procedimental (habilidades metacognitivas, «saber cómo». La meta-
cognición, incluye habilidades metacognitivas de orientación, planificación, 
evaluación y elaboración (reflexión). De otro lado, los estudios de Brown y 
DeLoache (1978) relacionarían la metacognición y autorregulación con el lo-
gro de aprendizajes eficaces (Cerezo et al., 2019; Veenman, 2007; Veenman, 
2011a; Veenman, 2015). Estos autores consideran la autorregulación como una 
parte de la metacognición y lo relacionan directamente con el aprendizaje pro-
fundo frente al aprendizaje superficial. Además, en el contexto autorregulatorio 
Zimmerman (2008) y Zimmerman y Schunk (2008) consideran que la autorre-
gulación depende de factores socio-emocionales que condicionan el desarrollo 
metacognitivo. Estos autores consideran la metacognición como supraordenada 
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a la metacognición. Por lo que la definición del término de autorregulación tam-
poco es unánime. Otras investigaciones (Veenman, 2011a,b) indican que la auto-
rregulación se relaciona directamente con el conocimiento procedimental y que 
éste posee un mecanismo de feedback que ayuda al aprendiz en la construcción 
del conocimiento (Norman y Furnes, 2016). Igualmente, la adquisición del co-
nocimiento implicaría la utilización de distintas estrategias metacognitivas (Van 
der Stel y Veenman, 2014):

a)	 Estrategias metacognitivas de Orientación: guía el proceso de resolución y 
activa los conocimientos previos necesarios.

b)	 Estrategias metacognitivas de Planificación: permite la secuenciación en 
pasos del proceso de resolución.

c)	 Estrategias metacognitivas de Evaluación: evalúa los pasos dados analizan-
do si son efectivos o no para, en su caso, reorientar la planificación.

d)	 Estrategias metacognitivas de Elaboración: relaciona las conclusiones en-
contradas con las cuestiones planteadas en el problema o tarea a resolver.
Siguiendo a Sáiz-Manzanares y Valdivieso-León (2020, p. 51) parece exis-

tir un consenso en el ámbito de la ciencia cognitiva sobre que las estrategias 
metacognitivas facilitan el desarrollo de la autorregulación durante el proceso 
de aprendizaje (Meijer et al., 2006). Los resultados de distintas investigacio-
nes muestran como aquellos estudiantes que son entrenados en la utilización 
de estrategias de aprendizaje autorregulado mejoran significativamente su 
rendimiento académico y experimentan un mayor compromiso con la rea-
lización de tareas (Broadbent y Poon, 2015). También, estos perfeccionan sus 
habilidades de planificación, control y regulación de sus actividades académi-
cas (Ventura et al., 2017). Además, las estrategias metacognitivas son impor-
tantes predictores de los resultados de aprendizaje exitosos (Van der Stel y 
Veenman, 2014), ya que explicarían el 40% de la varianza (Veenman, 2011b). 
Por ello, la utilización de las estrategias de autorregulación es muy relevante 
para guiar los procesos de enseñanza dentro de los contextos de aprendizaje que 
incluyen sistemáticamente, y cada vez con mayor frecuencia, las nuevas tecno-
logías (Cerezo, et al, 2016; Järvelä et al., 2016). Concretamente, en el entorno 
universitario la autorregulación del estudiantado de su propio aprendizaje y el 
uso de las tecnologías puede potenciar la adquisición de aprendizajes mucho más 
efectivos para el futuro egreso (Gil-Chaves et al., 2016; Sáiz-Manzanares et al., 
2019). Desde esta premisa, los entornos virtuales facilitan el entrenamiento de 
estrategias de autorregulación, lo cual según Díaz et al. (2017) tiene un impacto 
favorable sobre el aprendizaje autorregulado. Por otro lado, se observa que el 
uso de entornos virtuales de aprendizaje y evaluación inciden de forma signifi-
cativa con el desarrollo del aprendizaje autorregulado en el ámbito universitario 
(Martínez-Sarmiento y Gaeta, 2019).
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Otras teorías relacionan el conocimiento metacognitivo con los procesos de 
autocontrol. En este marco destaca la teoría de Nelson y Narens (1990; 1994). 
Estos autores diferenciaron entre el Object-Level y el Meta-Level. En el primer 
nivel se ejecutan los procesos cognitivos de nivel más bajo (procesos de memo-
ria, de lectura y de resolución de problemas). Respecto del Meta-Level, este re-
fiere a los procesos cognitivos (comparación, razonamiento e inferencias). Estos 
procesos implican estrategias de planificación y de evaluación que permiten el 
análisis sobre el Object-Level. En la fase cognitiva se hace referencia al conoci-
miento declarativo de condición y de acción que permite una descripción verbal 
de la estrategia respondiendo a las cuestiones: qué hacer (What to do), cuándo, 
porqué y cómo (When, Why y How) (Veenman et al., 2006 p. 9). Asimismo, el 
conocimiento metacognitivo, y en particular conocimiento condicional, incluye 
la regla if-then. En las fases iniciales de la resolución de problemas las estrate-
gias metacognitivas precisan desarrollarse paso a paso con el fin de reducir los 
errores. Posteriormente, en las fases subsiguientes del proceso de resolución, el 
conocimiento procedimental (procedural) tendrá que ser graduado para mejorar 
la fluidez y permitir una detección temprana de los errores y la corrección autó-
noma de los mismos (Veenman, 2015). El esquema de Nelson y Narens (1990), 
se puede consultar en el Figura 1.
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Figura 1. Modelo de Nelson y Narens (1990) (imagen elaboración propia desde el modelo de 
Nelson y Narens). 

 

En la Tabla 1 se presenta una relación entre las estrategias metacognitivas y su uso durante 
el proceso de aprendizaje. 

Tabla 1. Relación entre los conceptos de conocimiento de la cognición, regulación de la 
cognición y conocimiento metacognitivo (adaptación de Sáiz-Manzanares, 2019 p. 16). 

Estrategias Antes del aprendizaje 
 

Durante el 
aprendizaje 

Después del 
aprendizaje 

Orientación Activar los conocimientos 
previos. 
Identificar los problemas. 
Leer las instrucciones. 
Definir las metas de 
aprendizaje. 
Realizar predicciones del 
posible proceso de 
resolución. 

Relacionar lo nuevo 
con la información 
previa sobre la 
temática. 
Apoyarse en mapas 
conceptuales y 
diagramas de flujo 
para organizar las 
ideas. 

 

Planificación Realizar un plan de 
resolución. 
Realizarsauto-preguntas. 
Elegir estrategias adecuadas 
en cada uno de los pasos del 
plan de acción basadas en 
pensamiento condicional («si 
entonces»). 
Efectuar una evaluación final 
del plan. 

Reevaluar los planes.  

Evaluación y 
auto-
supervisión 

Detectar errores 
Auto-corrección 
Verificar alternativas 

Organizar la 
información. 
Hacer inferencias. 
Utilizar protocolos de 

Comparar los 
resultados de 
aprendizaje con la 
planificación 

Figura 1. Modelo de Nelson y Narens (1990) (imagen elaboración propia desde el modelo 
de Nelson y Narens).

En la Tabla 1 se presenta una relación entre las estrategias metacognitivas y su 
uso durante el proceso de aprendizaje.
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Tabla 1. Relación entre los conceptos de conocimiento de la cognición, regulación de la 
cognición y conocimiento metacognitivo (adaptación de Sáiz-Manzanares, 2019 p. 16).

Estrategias Antes del aprendizaje Durante el aprendizaje Después del aprendizaje

Orientación Activar los conocimientos 
previos.
Identificar los problemas.
Leer las instrucciones.
Definir las metas de 
aprendizaje.
Realizar predicciones 
del posible proceso de 
resolución.

Relacionar lo nuevo con la 
información previa sobre la 
temática.
Apoyarse en mapas 
conceptuales y diagramas 
de flujo para organizar las 
ideas.

Planificación Realizar un plan de 
resolución.
Realizar auto-preguntas.
Elegir estrategias adecuadas 
en cada uno de los pasos 
del plan de acción basadas 
en pensamiento condicional 
(«si entonces»).
Efectuar una evaluación 
final del plan.

Reevaluar los planes.

Evaluación y 
auto-supervisión

Detectar errores
Auto-corrección
Verificar alternativas

Organizar la información.
Hacer inferencias.
Utilizar protocolos de think 
aloud y reflexionar sobre su 
contenido.
Construir un metalevel en 
la propia estructuración 
mental.
Revisar la comprensión.
Evaluar el logro de las 
metas de aprendizaje.
Buscar ayuda en aspectos 
en los que se tienen dudas.
Cambiar estrategias.
Reevaluar el trabajo.

Comparar los resultados 
de aprendizaje con la pla-
nificación previa y con las 
evidencias del desarrollo 
del aprendizaje.
Comparación entre los 
objetivos y los resultados 
de aprendizaje.

Reelaboración y 
reflexión

Realizar un resumen del 
proceso de resolución 
seguido.
Sacar conclusiones de lo 
aprendido y del proceso de 
aprendizaje efectuado.
Detectar los aspectos 
generales para generalizar 
lo aprendido y aplicarlo 
a la resolución de tareas 
semejantes.

Proceso de reflexión sobre 
la propia ejecución.
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Asimismo, en la Figura 2 se presenta una relación entre la clasificación de las 
estrategias metacognitivas propuesto por van der Stel y Veenman (2014) y los proce-
sos que se pueden ejecutar durante la resolución de tareas o de problemas.
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Figura 2. Clasificación de las estrategias Metacognitivas adaptación de van der Stel y Veenman 
(2014) 

En síntesis, se puede concluir que en la resolución de problemas la relación entre 
el tipo de aprendizaje y la autorregulación (entendida como una parte o componente de la 
metacognición) es un proceso complejo de interacción entre las variables: tarea, persona 
y estrategias implicadas en la resolución efectiva de los mismos (Efklides, 2012; Flavell, 
1979), un ejemplo de funcionamiento se presenta en la Figura 3. Además, se debe 
considerar la componente evolutiva del pensamiento, las estrategias de autorregulación 
no se desarrollan de forma natural en todas las personas. Seguidamente, se presenta un 
esquema ver Figura 4. 

Figura 2. Clasificación de las estrategias Metacognitivas adaptación de van der Stel y 
Veenman (2014)

En síntesis, se puede concluir que en la resolución de problemas la relación 
entre el tipo de aprendizaje y la autorregulación (entendida como una parte o com-
ponente de la metacognición) es un proceso complejo de interacción entre las va-
riables: tarea, persona y estrategias implicadas en la resolución efectiva de los mis-
mos (Efklides, 2012; Flavell, 1979), un ejemplo de funcionamiento se presenta en la 
Figura 3. Además, se debe considerar la componente evolutiva del pensamiento, las 
estrategias de autorregulación no se desarrollan de forma natural en todas las perso-
nas. Seguidamente, se presenta un esquema ver Figura 4.
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Figura 3. Proceso de enseñanza-aprendizaje (imagen fuente propia). 

 

 

Figura 4. Relación interconceptual en el ámbito metacognitivo (imagen fuente propia). 

1.2.2. Metacognición y metaconciencia 

La metacognición, esencial para abordar la ejecución de tareas complejas. Esta es 
la conciencia y la regulación de los propios procesos cognitivos, haciendo hincapié 
específicamente en las funciones cognitivas autodirigidas (Nelson, 1996; Schraw y 
Dennison, 1994). La metacognición abarca dos componentes principales: el conocimiento 
metacognitivo (este refiere a la comprensión de las capacidades cognitivas personales, 
incluyendo cómo funciona la memoria humana y las estrategias que pueden emplearse 
para regular los procesos cognitivos). La regulación metacognitiva se refiere a la 
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1.2.2.	Metacognición y metaconciencia

La metacognición, esencial para abordar la ejecución de tareas complejas. Esta 
es la conciencia y la regulación de los propios procesos cognitivos, haciendo hinca-
pié específicamente en las funciones cognitivas autodirigidas (Nelson, 1996; Schraw 
y Dennison, 1994). La metacognición abarca dos componentes principales: el cono-
cimiento metacognitivo (este refiere a la comprensión de las capacidades cognitivas 
personales, incluyendo cómo funciona la memoria humana y las estrategias que pue-
den emplearse para regular los procesos cognitivos). La regulación metacognitiva 
se refiere a la aplicación real de las estrategias metacognitivas. Según Stephanou y 
Mpiontini (2017) la regulación metacognitiva es esencial para el éxito académico, 
ya que permite a los alumnos planificar, supervisar y evaluar de manera competente 
sus propios procesos de aprendizaje. Asimismo, el modelo propuesto por Nelson y 
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Narens (1994) esclarece los ciclos de monitorización y regulación metacognitiva 
durante el aprendizaje. Como ya se ha comentado, este modelo comprende dos nive-
les jerárquicos: un metanivel y un nivel de objeto. Los procesos del nivel de objeto 
son supervisados por los del metanivel, y la supervisión metacognitiva implica la 
transmisión de información del nivel de objeto al metanivel. En el metanivel, la 
información se evalúa y, posteriormente, se procesa basándose en esta evaluación 
en el nivel de objeto. El control metacognitivo se refiere a la regulación del pro-
cesamiento de la información, que abarca la activación y utilización de estrategias 
de recuperación (Efklides, 2008; Shimamura, 2000). Asimismo, la metaconciencia 
sería un componente de la metacognición. Esta, se puede definir como la capaci-
dad de reflexionar sobre el conocimiento y manipularlo, tratando el conocimiento 
como objeto de pensamiento en lugar de limitarse a repetir lo que se ha aprendido 
(Woll, 2019). Alcanzar la metaconciencia permite al estudiantado: describir, aplicar 
e integrar los conocimientos adquiridos con nueva información en diversos contex-
tos. Bourdeaud’hui et al. (2021) investigaron la relación entre la metaconciencia, la 
motivación para la adquisición de destrezas. Las conclusiones de sus estudios indi-
caron que la metaconciencia mediaba la relación entre el compromiso del alumnado 
y las destrezas adquiridas. Otros estudios (Robillos y Bustos, 2022) sugirieron que 
la utilización de la metaconciencia puede mejorar significativamente las estrategias 
metacognitivas de aprendizaje.

Además, los procesos cognitivos tienen que considerar la carga cognitiva rele-
vante o germana para desarrollar la metaconciencia de los contenidos de aprendizaje. 
La monitorización y regulación del esfuerzo (de Bruin et al., 2023) postula que la 
carga cognitiva impuesta por una tarea de aprendizaje puede servir como señal para 
regulación del proceso de aprendizaje (de Bruin et al., 2023). Invertir en el apren-
dizaje es una decisión consciente, a menudo basada en la autoconciencia del apren-
diz. Por ello, la inversión de recursos respecto de la carga cognitiva germana en el 
aprendizaje es una decisión consciente, a menudo basada en la autoconciencia del 
aprendiz y en la supervisión de su propio proceso de aprendizaje.

Si bien, los procesos de supervisión pueden ayudar al estudiantado a evaluar 
con precisión el número de recursos germánicos necesarios para completar la tarea. 
Aunque las tareas complejas pueden resolverse sin utilizar recursos germánicos, es 
importan aplicar la metaconciencia para evitar la sobrecarga cognitiva cuando el 
estudiantado se enfrenta a la resolución de tareas complejas. Por consiguiente, las 
tareas complejas deben potenciar la metaconciencia, especialmente en el caso de 
aprendices con un alto nivel de metacognición.

1.3.	 Ejemplo de análisis cognitivo de tareas

En los siguientes artículos se puede consultar la aplicación de un análisis meta-
cognitivo respecto de la resolución de distintas tareas.
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Sáiz-Manzanares, M.C., Marticorena-Sánchez, R., Rodríguez-Díez, J.J., Rodríguez-
Arribas, S., Díez-Pastor, J.F. (2021). Improve teaching with modalities and 
collaborative groups in an LMS: an analysis of monitoring using visualisation 
techniques. Journal of Computing in Higher Education, 33, 747-778. https://
doi.org/10.1007/s12528-021-09289-9

Sáiz-Manzanares, M.C., Marticorena, R., Rodríguez-Arribas, S., …Mercado, E. 
(2021). Teaching and learning styles in Moodle: an analysis of effectiveness 
of use in STEM and Non-STEM qualifications from a gender perspective. 
Sustainability, 13(3), 1166. https://doi.org/10.3390/su13031166

Sáiz-Manzanares, M.C., Queiruga-Dios, M.Á., García-Osorio, C.I., Montero, 
E., y Rodríguez, J. (2019). Observation of Metacognitive Skills in Natural 
Environments: A Longitudinal Study With Mixed Methods. Frontiers in 
Psychology, 10(2398), 1-13. https://doi.org/10.3389/fpsyg.2019.02398

1.4.	 Teoría de la carga cognitiva

La arquitectura cognitiva humana según la teoría de la carga cognitiva 
(Cognitive Load Theory o CLT) hace referencia a que la capacidad de procesa-
miento de la memoria de trabajo es limitada cuando se trata de información nueva, 
mientras que no hay límites conocidos cuando se trata de información familiar al-
macenada, ya en la memoria a largo plazo (MLP) (Baddeley, 2000). Para mitigar 
la sobrecarga cognitiva, la CLT aboga por el aumento gradual en la complejidad 
conceptual y procedimental de las tareas, especialmente en el estudiantado novel 
(Chen et al., 2018; van Gog y Sweller, 2015). Si bien, la simplificación excesiva 
de los materiales de aprendizaje puede influir en el potencial cognitivo del alumna-
do (Chen y Kalyuga, 2020; Hartmann et al., 2020). Concretamente, las tareas que 
suponen un reto pueden incrementar el compromiso de los estudiantes (van Gog y 
Sweller, 2015), siempre que el alumnado perciba dicho reto como asumible. En esta 
línea, la participación del estudiantado en actividades metacognitivas puede facilitar 
la construcción de esquemas en la memoria de trabajo y mejorar la metaconciencia 
(Marulis y Nelson, 2021).

Concretamente, la psicología de la instrucción distingue entre conocimiento 
biológicamente primario y conocimiento biológicamente secundario. El primero se 
adquiere de forma inconsciente y con un esfuerzo mental mínimo, mientras que el 
segundo implica la necesidad de una instrucción directa sobre las tareas de resolu-
ción de problemas (la búsqueda de la información, la toma de decisiones, el razona-
miento relacional, la abstracción, el razonamiento relacional etc.). Estos procesos, 
dependen de la integración deliberada y el mantenimiento de la información en la 
memoria de trabajo (Sweller, 2023). Esta teoría ofrece directrices para diseñar tareas 
de aprendizaje basadas en la arquitectura cognitiva humana, que incluye tanto la 
memoria de trabajo como la MLP. La memoria de trabajo tiene una capacidad y una 
duración que son limitadas en el procesamiento de información nueva. Sin embar-

https://doi.org/10.1007/s12528-021-09289-9
https://doi.org/10.1007/s12528-021-09289-9
https://doi.org/10.3390/su13031166
https://doi.org/10.3389/fpsyg.2019.02398
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go, estas limitaciones desaparecen una vez que la información se transfiere a MLP 
(Sweller et al., 2019). Asimismo, la información almacenada en la MLP puede recu-
perarse sin que ello repercuta negativamente sobre la capacidad de procesamiento de 
la memoria de trabajo (Ericsson y Kintsch, 1995).

En el aprendizaje, este fenómeno se ejemplifica con el efecto de inversión de la 
experiencia en el que los métodos de enseñanza eficaces para los aprendices nove-
les pueden resultar innecesarios o incluso demasiado simplistas para los aprendices 
expertos (Kalyuga, 2012). Dentro del procesamiento de la información el principal 
objetivo del diseño didáctico es facilitar la adquisición de conceptual (Sweller et al., 
2019). En este ámbito, una estrategia que puede ayudar al aprendiz es la adquisición 
de formación previa. Dicha adquisición, antes de comenzar la tarea de aprendizaje 
principal puede reducir las demandas cognitivas durante el aprendizaje y permitir al 
aprendiz asignar eficazmente recursos de memoria a la nueva información (Mayer, 
2010).

La CLT define pues tres tipos de carga cognitiva (Sweller, 2010): intrínseca, 
extrínseca y germana. La carga cognitiva intrínseca (CCI) se refiere a la car-
ga cognitiva fundamental impuesta por la complejidad del material aprendizaje, 
determinada por el número de elementos que interactúan y el aprendiz. Una ma-
yor pericia suele correlacionarse con una menor complejidad percibida de la tarea 
(Chen et al., 2023). Por el contrario la carga cognitiva extrínseca (CCE) depende 
de la forma de presentar la información. De otro lado, la carga cognitiva germa-
na es la directamente responsable de contribuir al aprendizaje. Esta consiste en 
la utilización de recursos para construir y automatizar esquemas en la MLP. Se 
constituye a partir de procesos cognitivos de simbolización o de representación. 
Este tipo de carga está relacionado con los procesos cognitivos y psicomotores, y 
su percepción se ve influida por la forma de presentación de la información y el 
tipo de actividades (Artino, 2008). En síntesis, la carga cognitiva germana refiere 
al proceso de construcción de esquemas y la comprensión profunda del material. 
En concreto, la CCE puede reducirse al mínimo mediante el perfeccionamiento 
de las estrategias de instrucción. La CLT postula que la CCI y CCE tienen efectos 
acumulativos en la carga cognitiva. A diferencia la CCI representa un esfuerzo 
cognitivo productivo dirigido a procesar las características intrínsecas de una tarea 
de aprendizaje, cuando el aprendiz asigna recursos cognitivos que son beneficiosos 
para el aprendizaje (Klepsch y Seufert, 2020).

La CLT parte de la base de que para facilitar la adquisición de conocimientos, 
los materiales de aprendizaje deben adecuarse a las capacidades del aprendiz. Por lo 
tanto, se sugiere aumentar gradualmente la complejidad de las tareas de aprendizaje 
(p. ej., ejemplos trabajados) reduce la CCE y, por tanto, mejora el rendimiento en 
comparación con en tareas de resolución de problemas con una alta complejidad 
constante (Likourezos y Kalyuga, 2017). La instrucción directa ayuda al alumnado a 
desarrollar estrategias de resolución de problemas y minimiza el riesgo de almacenar 
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soluciones incorrectas en la memoria de trabajo (Park, 2020). Además, las inves-
tigaciones de van Gog y Sweller (2015) indican que a diferencia de las tareas con 
complejidad elevada de forma constante las tareas con una complejidad baja o que 
aumenta gradualmente pueden mejorar el rendimiento. Estos estudios sugieren que 
alumnado con conocimientos previos limitados generan submetas y planes de acción 
para superar los obstáculos. Esto puede aumentar la CCE y reducir los recursos de 
memoria de trabajo disponibles para lograr un aprendizaje eficaz. Por lo tanto, se 
recomienda que la complejidad de la tarea sea baja o aumente gradualmente para 
facilitar en el aprendiz el procesamiento y la retención de nueva información en la 
memoria de trabajo (Sweller, 2010).

1.5.	 Método NASA TLX

Seguidamente, se va a presentar la prueba para la evaluación de la carga cog-
nitiva denominada NASA TLX (Hart y Staveland 1988). Según la información 
facilitada por el Ministerio de Trabajo y Asuntos Sociales del Gobierno de España, 
los sistemas complejos modernos exigen elevadas demandas de la persona incre-
mentadas por el uso de las nuevas tecnologías. Por ello, ciertos desempeños pue-
den exigir un estado de atención (capacidad de «estar alerta») y de concentración 
(capacidad de estar pendiente de una actividad o un conjunto de ellas durante un 
periodo de tiempo) cuando se realiza conscientemente y con cierta continuidad, 
da lugar a un incremento de la carga mental. La propia tarea puede exigir una 
atención y concentración elevadas en función de la cantidad de señales a las 
que el sujeto tiene que atender; las inferencias que debe realizar; el nivel de pre-
cisión de la respuesta, etc. A estos factores de la tarea hay que añadir los aspectos 
organizativos, especialmente los que se refieren a la organización del tiempo de 
trabajo (ritmos, pausas, etc.). Bajo este punto de vista se puede definir la carga 
mental como la cantidad de esfuerzo deliberado que se debe realizar para lo-
grar resolver una tarea. Por ello, se considera interesante disponer de un método 
estandarizado para el diagnóstico de la carga con el fin de poder realizar una 
valoración lo más exacta posible. El método NASA Tast Load Index es uno de los 
más utilizados. Este es un procedimiento de valoración multidimensional que 
da una puntuación global de carga de trabajo, basada en una media pondera-
da de las puntuaciones en seis subescalas, cuyo contenido es el resultado de la 
investigación dirigida a aislar de forma empírica y a definir los factores que son 
de relevancia en la experiencia subjetiva de carga de trabajo. Se parte de la pre-
misa de que la carga cognitiva es una percepción individual que depende de 
las características del sujeto y de la tarea. El marco teórico de NASA se puede 
consultar en la Figura 5.
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La aplicación del instrumento NASA-TLX se lleva a cabo en dos fases: una 
fase de ponderación, en el momento anterior a la ejecución de la tarea y otra fase 
de puntuación que se realiza inmediatamente después de la ejecución de la tarea.

Se parte de la premisa de que la carga de la tarea se relaciona con la sensación 
subjetiva de carga. Por ello, el requisito previo es que los aprendices hagan una 
ponderación sobre cada uno de los seis factores respecto de su percepción de la car-
ga cognitiva. El objetivo de esta fase es, pues, la definición de las fuentes de carga 
(Hanckok y Meshkati, 1988) (ver Tabla 2).

Tabla 2. Factores de carga cognitiva.

Dimensión Extremos Descripción Operativización

1.	Exigencia mental 
de la tarea (M)

Baja/Alta Cantidad de actividad 
mental y perceptiva 
que requiere la tarea

¿Cuánta actividad mental y percep-
tiva fue necesaria? (pensar, decidir, 
calcular, etc.).
¿Es una tarea difícil o fácil, simple o 
compleja, pesada o ligera?

2.	Exigencia física (F) Baja/Alta Cantidad de actividad 
física que requiere la 
tarea

¿Cuánta actividad física fue necesa-
ria? ¿Se trata de una tarea difícil o fá-
cil, lenta o rápida, relajada o cansada?

3.	Exigencia temporal 
(T)

Baja/Alta Nivel de presión tem-
poral percibida

¿Cuánta presión de tiempo sintió 
debido al ritmo al cual se sucedían las 
tareas o elementos de las tareas?
¿Era el ritmo lento y pausado, o rápi-
do y frenético?
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Dimensión Extremos Descripción Operativización

4.	Rendimiento (R) Bajo/Alto Grado de satisfacción 
con el propio nivel de 
rendimiento

¿Hasta qué punto cree que ha tenido 
éxito en los objetivos establecidos por 
el investigador (o por Ud. mismo)?
¿Cuál es su grado de satisfacción con 
el nivel de ejecución?

5.	Esfuerzo (E) Bueno/Malo Grado de esfuerzo 
mental y físico que 
debe realizar para 
obtener su nivel de 
rendimiento

¿En qué medida ha tenido que trabajar 
(física o mentalmente) para alcanzar 
su nivel de resultados?

6.	Nivel de frustración 
(Fr)

Bajo/Alto Grado de inseguridad, 
estrés, irritación, des-
contento, etc., sentido 
durante la realización 
de la tarea

Durante la tarea, ¿en qué medida se 
ha sentido inseguro, desalentado, 
irritado, tenso o preocupado o por 
el contrario, se ha sentido seguro, 
contento, relajado y satisfecho?

Asimismo, se les pide a los aprendices que marquen en la plantilla siguiente el 
aspecto del par que más contribuye a la carga de la tarea (ver Tabla 3).

Tabla 3. Plantilla de carga cognitiva.

M-F F-T T-E
M-T F-R T-Fr
M-R F-E R-E
M-E F-Fr R-Fr
M-Fr T-R E-Fr

Seguidamente, se le pide al aprendiz que marque en el continuo el punto en el 
que situaría su percepción de la carga cognitiva sobre la tarea.

Tabla 4. Análisis de percepción del continuo de carga cognitiva en distintas dimensiones.

Exigencia mental ¿Qué exigencia cognitiva 
demanda la ejecución de la tarea?

Baja � Alta

Exigencia física ¿Qué exigencia física demanda la 
ejecución de la tarea?

Baja � Alta

Exigencia temporal ¿Qué exigencia sobre el ritmo 
para la resolución marca la ejecución de la tarea?

Baja � Alta

Rendimiento ¿Cómo de exitoso ha sido el 
rendimiento?

Bajo � Alto

Esfuerzo ¿Cómo ha sido el grado de trabajo para 
alcanzar un rendimiento positivo?

Bajo � Alto

Nivel de frustración ¿Qué grado de estrés ha 
exigido la ejecución de la tarea?

Bajo � Alto
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Estos pesos pueden tomar valores entre 0 (para la dimensión que no ha sido 
elegida en ninguna ocasión y por tanto no se considera relevante) y 5 (para la dimen-
sión que siempre ha sido elegida y por tanto se considera que es la fuente de carga 
más importante). El mismo conjunto de pesos puede utilizarse para variaciones de 
una misma tarea o para un grupo de subtareas. Además, los pesos dan información 
diagnóstica acerca de la naturaleza de la carga de trabajo impuesta por la tarea ya que 
proporcionan datos acerca dos fuentes de variabilidad interpersonal:

a)	 Las diferencias interpersonales en la definición de carga de trabajo, en cada 
tarea considerada.

b)	 Las diferencias en las fuentes de carga de trabajo entre distintas tareas El segun-
do requisito es adjudicar un valor para cada factor, que representa la magnitud 
de cada factor en una tarea determinada.
En esta fase de puntuación, las personas valoran la tarea o subtarea que acaban 

de realizar en cada una de las dimensiones, marcando un punto en la escala que se les 
presenta (ver Tabla 5). Cada factor se presenta en una línea dividida en 20 intervalos 
iguales (puntuación que es reconvertida a una escala sobre 100) y limitada bipolar-
mente por unos descriptores (por ejemplo: elevado/bajo, como muestra la Tabla 6) y 
teniendo presentes las definiciones de las dimensiones.

Tabla 5. Tabla de Evaluación del Método NASA-TLX.

VARIABLE (a)
Peso

(b)
Puntuación

(c)
Puntuación  
convertida
(b x 5)

(d)
Puntuación  
ponderada
(c x a)

Exigencia mental
Exigencia física
Exigencia temporal
Rendimiento
Esfuerzo
Frustración

Total 15

Tabla 6. Tabla de puntuaciones.

NASA TLX Nivel de carga cognitiva
500 puntos o más Bajo
500-1000 puntos Medio
Más de 1000 puntos Alto
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Tabla 7. Dimensiones de NASA y relación con la percepción de la carga intrínseca y extrínseca.

Variable Intrínseco Extrínseco
Exigencias mentales •	 Identificación de indicadores, señales para la 

realización de una tarea.
•	 Análisis de relaciones complejas.
•	 Toma de decisiones en contextos de elevado 

impacto.
•	 Simultaneidad de acciones y tomas de decisio-

nes complejas.
•	 Responsabilidad sobre personas o equipamien-

tos en condiciones de riesgo.
•	 Todas las acciones que no cuentan con alterna-

tivas de soporte o sustitución (automatización)

La tarea puede ser adaptada 
a las características del 
aprendiz.

Exigencia física •	 La realización de la tarea implica elevada carga 
física y/o condiciones ambientales exigentes.

Exigencia temporal •	 Implica operar con plazos de respuesta breves, 
no predecibles o trabajar por períodos prolon-
gados, eventualmente sin o con escasas pausas. 
Tiene escaso control de sus tiempos de descan-
so y/o de término de su jornada de trabajo.

Rendimiento •	 Elevadas exigencias de rendimiento.
Esfuerzo •	 Requiere poner permanentemente en juego 

todos sus recursos intelectuales, físicos y emo-
cionales para la realización de la tarea.

Nivel de frustración •	 Los resultados no son los esperados a pesar del 
esfuerzo aplicado.

1.6.	 Preguntas de autoevaluación Tema 1

1.	 Siguiendo a Winston (1992) La Inteligencia Artificial se puede definir como el 
estudio de métodos computacionales que pueden hacer posible:

a) Percibir.
b) Razonar.
c) Actuar.
d) Todos ellos

2.	 Siguiendo a Mira et al. (1995) el propósito de la Inteligencia Artificial es desarrollar:

a) Modelos conceptuales.
b) Estrategias de programación.
c) Modelos conceptuales y estrategias de programación que reproduzcan las 
tareas cognitivas con la analogía con los sistemas biológicos humanos.

d) Modelos conceptuales y estrategias de programación que reproduzcan las tareas 
cognitivas con la analogía con los sistemas computacionales de la máquina.
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3.	 Los modelos post-hoc suelen identificar:

a) la interpretabilidad.
b) la explicabilidad.
c) ambas
d) ninguna de ellas (a, b y c)

4.	 La modificabilidad cognitiva se puede entender como:

a) una transformación de las habilidades cognitivas a través de entrenamiento.
b) una modificación sin transformación.
c) un cambio sin entrenamiento
d) ninguna de ellas

5.	 Siguiendo la teoría de Fodor (1986)

a) la mente se constituye en módulos.
b) los módulos analizan las entradas de la información.
c) la existencia de esquemas que podrían construir las representaciones de output.
d) Todas ellas son ciertas.

6.	 Los conocimientos previos tendrían un papel relevante respecto del procesa-
miento de la información nueva. Dicho procesamiento:

a) permanece estático a lo largo de la vida.
b) cambia a lo largo del ciclo vital.
c) viene establecido de forma genética.
d) ninguna es cierta.

7.	 Siguiendo a Flavell (1979) La metacognición se relaciona con el:

a) conocimiento declarativo.
b) conocimiento procedimental.
c) con el «saber qué»
d) a, b y c son correctas

8.	 Siguiendo a Van der Stel y Veenman (1994) las estrategias metacognitivas son:

a) Orientación y Planificación.
b) evaluación y elaboración.
c) Intervención.
d) a y b son correctas
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9.	 El uso de las estrategias metacognitivas son importantes predictores de los resul-
tados de aprendizaje exitosos, en concreto este uso predice:

a) el 35% de la varianza de los resultados de aprendizaje.
b) el 40% de la varianza de los resultados de aprendizaje.
c) el 60% de la varianza de los resultados de aprendizaje.
d) el 42% de la varianza de los resultados de aprendizaje.

10.	En el modelo de Nelson y Nares (1990; 1994) se diferencia el Object-Level y el 
Meta-Level. El primero hace referencia a:

a) la ejecución de procesos cognitivos de memoria, lectura y de resolución 
de problemas.

b) a la ejecución de procesos cognitivos de comparación, razonamiento e inferencias.
c) a y b son verdaderas.
d) a y b son falsas.

11.	La teoría de la carga cognitiva (CLT) refiere que:

a) la capacidad de procesamiento en la memoria de trabajo es ilimitada.
b) la capacidad de procesamiento en la memoria de trabajo es limitada.
c) la capacidad de procesamiento es semejante a la MLP.
d) la capacidad de procesamiento es semejante a la memoria asociativa.

12.	Según Sweller (2010) la CLT define tres tipos de carga cognitiva: intrínseca, 
extrínseca y germana. Esta última se puede definir como:

a) la carga cognitiva impuesta por la complejidad del material de aprendizaje y 
determinada por el número de elementos que interactúan según cada aprendiz.

b) la carga que surge de los procesos cognitivos irrelevantes impuestos por un 
diseño instruccional no ajustado.

c) la carga cognitiva responsable de contribuir al aprendizaje desde la uti-
lización de recursos para construir y automatizar esquemas de la MLP.

d) la carga cognitiva responsable de contribuir al aprendizaje desde la utilización 
de recursos para construir y automatizar esquemas de la MCP.

1.7.	 Práctica Tema 1

1. Diseñar una tarea de aprendizaje definiendo el tipo (visual, auditiva, etc.), la 
población a la que va dirigida (niños, adultos, etc.) y etapa evolutiva (sensoriomoto-
ra, preoperacional, operaciones concretas u operaciones formales), el tipo de conoci-
mientos previos necesarios para ejecutarla con éxito, las competencias cognitivas y 
metacognitivas que se debe aplicar para resolverla.



40� sistemas inteligentes aplicados a la psicología.

2. Aplicar la tarea de aprendizaje a tres sujetos.
3. Aplicar el método NASA TLX a los tres sujetos y analizar su percepción de 

carga cognitiva.
4. Estudiar si hay diferencias y en caso afirmativo argumentar una previsión de 

la causa o posibles causas.
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La utilización de los denominados sistemas conversacionales inteligentes o 
bots se están utilizando en el ámbito de la psicología o de la medicina, en concreto en 
la intervención terapéutica desde hace décadas. El origen se sitúa en el test de Alan 
Turing (Copeland, 2003) que fue desarrollado por este autor sobre los años cincuenta 
del siglo pasado. La idea era que una máquina (computador) simulase a un humano 
en una conversación. En 1966 Joseph Weizenbaum desarrolla ELIZA para el IBM 
7094, este recurso era un bot aplicado a la psicoterapia. El software analizaba las pa-
labras claves y elaboraba respuestas en función de las mismas. En 1975 se desarrolló 
el software PARRY (Colby, 1975), el cual simulaba la conversación de un paciente 
con una afectación siguiendo el Manual Diagnóstico y Estadístico de los Trastornos 
Mentales: DSM-5 (2013) en lo que se tildaría de «Espectro de la esquizofrenia y 
otros trastornos psicóticos».

2.1.	 Definición de bot

Puede definirse como una aplicación de software programada para para auto-
matizar tareas y simular el comportamiento humano. El bot puede ser de texto, de 
voz, multimodal y también pueden incluir figuras tipo avatar con el fin de simular 
mejor la interacción humana. Los modelos más sofisticados de bot utilizan redes 
neuronales o algoritmos de aprendizaje automático utilizando modelos de lenguaje 
natural. En la aplicación en psicología se pretende que el bot simule a un terapeuta 
en una intervención.

2.2.	 Estructura de un bot

Un bot se fundamenta un software ejecutado sobre plataformas hardware que 
lo hospedan. Previamente, en este caso el psicólogo debería de diseñar un banco de 
pregunta-respuesta. El diseño se debería aplicar al objetivo de la intervención. El 
bot, se podría aplicar en web, en dispositivos móviles o en altavoces inteligentes 
tipo Alexa. Los bots pueden estar basados en reglas o basados en inteligencia artifi-
cial generativa. Los primeros son más simples, más económicos y utilizan un flujo 
predefinido. Un ejemplo sería los que podemos elaborar con aplicaciones como 
DiagFlow. Los segundos, al aplicar recursos de inteligencia artificial generativa, 
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es decir algoritmos que facilitan el aprendizaje más autónomo de la maquina y 
también agilizan el tipo y calidad de las respuestas y por ende de las interacciones. 
Suelen utilizar algoritmos de árboles de decisión que aplican la premisa de la toma 
de decisión de «si entonces». Un ejemplo son los recursos de IBM WatsonX. Este 
funciona con lenguaje natural desde un razonamiento probabilístico. IBM WatsonX 
Assistant es una herramienta en la nube y facilita la creación de agentes virtuales 
personalizados.

El funcionamiento general de un bot se resume en «intenciones», «entidades» 
y «diálogos». Las primeras tienen como objetivo conocer qué es lo que quiere o ne-
cesita el usuario. Las segundas intentan recoger los valores o palabras clave que el 
usuario ha incluido en la conversación. Referente a los diálogos intentan dar respues-
ta al usuario en función de las «intenciones» y de las «entidades» detectas.

Un ejemplo de diálogo de flujo con Chatfuel que aplica reglas de decisión se 
puede consultar en la Figura 6.
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Un ejemplo de diálogo de flujo con IBM WatsonX que aplica inteligencia arti-
ficial se puede consultar en la Figura 7.
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(CUQ) de Holmes et al. (2019).

Seguidamente, se presentan varios artículos de investigación que han utilizado 
aplicaciones tipo bot en terapia en psicología:
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Dharrao, D., y Gite, S. (2024). TherapyBot: a chatbot for mental well-being using 
transformers. International Journal of Advances in Applied Sciences (IJAAS), 
13(1), 1-12. https://doi.org/10.11591/ijaas.v13.i1.pp1-12

Jayasuriya, A., Gunarathne, Y., Karawita, S., Abeywickrama, T., y Weerathunga, 
I. (2023). AI-Based Psychology Experts Centralized Support Platform 
for Post-Traumatic Stress Disorder, 2023 5th International Conference on 
Advancements in Computing (ICAC), Colombo, Sri Lanka, 2023, pp. 561-
566, https://doi.org/10.1109/ICAC60630.2023.10417685

Oliveira, A.L.S., Matos, L.N., Junior, M.C., Delabrida, Z.N.C. (2021). An Initial 
Assessment of a Chatbot for Rumination-Focused Cognitive Behavioral 
Therapy (RFCBT) in College Students. In: Gervasi, O., et al. Computational 
Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture 
Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.
org/10.1007/978-3-030-86979-3_39

Tucker, I. (2024). Digitally mediated psychotherapy: Intimacy, distance, and con-
nection in virtual therapeutic spaces. European Journal of Psychotherapy & 
Counselling, 26 (1–2), 168–179. https://doi.org/10.1080/13642537.2024.231
3193

Para una ampliación de este capítulo se puede consultar en:

MÓDULO VII.2 Marticorena Sánchez, R. (2024). Intervención temprana y apli-
cación de recursos inteligentes: Intelligent Personal Assistants. En M.C. 
Sáiz-Manzanares, M.C. y M. Santamaría Vázquez (Eds.), Formación y 
Especialización en Atención Temprana: uso de Recursos Tecnológicos y de 
Inteligencia Artificial (235- 357). Burgos: Servicio de Publicaciones de la 
Universidad de Burgos. https://doi.org/10.36443/9788418465802

Marticorena Sánchez, R., y Sáiz Manzanares, M.C (2024). Protocolo para la inte-
gración de un chatbot en una plataforma virtual de aprendizaje tipo Moodle. 
Repositorio Institucional de la Universidad de Burgos. http://hdl.handle.
net/10259/8926

2.3.	 Preguntas de autoevaluación Tema 2

1. ¿Sobre qué se ejecuta un bot?

a) Únicamente sobre navegadores web.
b) Exclusivamente en dispositivos móviles.
c) En plataformas hardware que lo hospedan.
d) Solo en servidores en la nube.
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2. ¿Qué debe diseñar el psicólogo previamente para que funcione el bot?

a) Un sistema de inteligencia artificial autónomo.
b) Una aplicación móvil compatible.
c) Un banco de pregunta-respuesta.
d) Un hardware especializado.

3. ¿Cuál es una característica de los bots basados en reglas?

a) Se adaptan automáticamente al lenguaje natural.
b) Utilizan un flujo predefinido.
c) Son más complejos y costosos que los basados en IA.
d) Solo funcionan con altavoces inteligentes.

4. ¿Cuál es uno de los objetivos del uso de bots en psicología?

a) Sustituir completamente al terapeuta humano.
b) Diagnosticar enfermedades físicas.
c) Programar citas médicas automáticamente.
d) Simular a un terapeuta en una intervención.

5. ¿Cuáles son algunos de los formatos que puede tener un bot?

a) Solo de texto y código.
b) Texto, voz, multimodal y con figuras tipo avatar.
c) Exclusivamente visuales.
d) Únicamente en forma de aplicación móvil.

2.4.	 Práctica Tema 2

Realizar un diálogo terapeuta-paciente para aplicar en una arquitectura de bot, 
se puede realizar el hilo conversacional real utilizando la arquitectura de Dialogflow 
https://cloud.google.com/products/conversational-agents?hl=es_419 o de IBM 
Watson de forma gratuita https://www.ibm.com/es-es/watson. No obstante, también 
se puede presentar solo el hilo conversacional simulado sin incluirlo en ninguna 
aplicación.

https://cloud.google.com/products/conversational-agents?hl=es_419
https://www.ibm.com/es-es/watson
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En primer lugar, se hará un acercamiento al concepto de tecnología eye tracking 
o seguimiento ocular y a su posible aplicación en la evaluación del procesamiento 
de la información durante la resolución de alguna tarea realizada por personas (con 
y sin afectaciones) en distintas edades y con diferentes objetivos de estudio. En con-
creto, en el ámbito de la psicología los investigadores o las investigadoras utilizan 
el seguimiento ocular para estudiar el comportamiento humano. Específicamente, la 
utilización de la tecnología eye tracking es especialmente relevante en el contexto 
de la: psicología cognitiva, neuropsicología, psicología del desarrollo, psicología 
de las emociones y en la psicología de la salud mental, entre otras especialidades 
psicológicas. Ejemplos de este uso con la tecnología eye tracking se pueden con-
sultar en enlace. En este tema se va a hacer referencia preferiblemente al trabajo 
con la tecnología Tobii. Las razones, nada tienen que ver con difundir una mar-
ca, sino con la versatilidad que esta tecnología tiene respecto de la integración de 
otros dispositivos de respuesta psicogalvánica de la piel o de electroencefalograma. 
Por ello, es una tecnología ampliamente extendida en distintas universidades en el 
ámbito de la psicología cognitiva, psicología del comportamiento, psicología del 
desarrollo, psicología clínica, psicología de la salud y psicología del lenguaje entre 
otras como son Harvard University, University of Toronto, Princeton University, 
The University of Sydney, University of Cambridge, University of Hong Kong, The 
University of Melbourne, Kyoto University, Stanford University, Universidad de 
Santiago de Chile, Yale University, Aeronautical University y McGill University, 
entre otras enlace.

3.1.	 Eye tracking utilizado en Psicología

En este apartado se abordará qué es la tecnología eye tracking, qué pasos hay 
que seguir para iniciar el trabajo, qué métricas registra y su significación en el ámbito 
de la psicología cognitiva y de la Instrucción, la sincronización de la tecnología eye 
tracking con dispositivos de respuesta psicogalvánica de la piel y de registro ence-
falográfico, junto con los análisis de los biomarcadores conductuales que aporta la 
tecnología multicanal integrada.

https://www.tobii.com/solutions/cognitive-and-psychological-research/psychology-and-neuroscience
https://www.tobii.com/solutions/cognitive-and-psychological-research/psychology-and-neuroscience
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3.1.1.	¿Qué es la tecnología eye tracking?

La tecnología eye tracking se fundamenta en el seguimiento ocular y en la 
medición de los movimientos oculares que se producen cuando un sujeto mira a un 
objeto, a una imagen, a un texto, a un vídeo, etc. La explicación es básicamente la 
captación del seguimiento ocular mientras el usuario efectúa una tarea a través de 
un patrón de luz infrarroja dirigido hacia los ojos. La luz infrarroja se reflecta en 
los ojos y las reflexiones oculares se captan por las cámaras del dispositivo de segui-
miento ocular. A continuación, desde la aplicación de distintos algoritmos el dispo-
sitivo de seguimiento ocular reconoce dónde está mirando el usuario. En la Figura 9, 
se puede observar el funcionamiento, hay un estímulo en la pantalla del ordenador, 
el ojo percibe la imagen en una posición de ejes de coordenadas (estas pueden ser 
en 3D, x, y, z, o en 2D x, y) en posición de ojo derecho y ojo izquierdo. También, 
se puede registrar el movimiento ocular sin necesidad de que el sujeto mire a una 
pantalla, puede mirar a una pizarra, a un objeto, a una superficie, etc. (ver Figura 10).

34 
 

seguimiento ocular mientras el usuario efectúa una tarea a través de un patrón de luz 
infrarroja dirigido hacia los ojos. La luz infrarroja se reflecta en los ojos y las 
reflexiones oculares se captan por las cámaras del dispositivo de seguimiento  ocular. A 
continuación, desde la aplicación de distintos algoritmos el dispositivo de seguimiento 
ocular reconoce dónde está mirando el usuario. En la Figura 9, se puede observar el 
funcionamiento, hay un estímulo en la pantalla del ordenador, el ojo percibe la imagen en 
una posición de ejes de coordenadas (estas pueden ser en 3D, x, y, z, o en 2D x, y) en 
posición de ojo derecho y ojo izquierdo. También, se puede registrar el movimiento ocular 
sin necesidad de que el sujeto mire a una pantalla, puede mirar a una pizarra, a un objeto, 
a una superficie, etc. (ver Figura 10). 

 

Figura 9. Tomado del Manual Tobii Pro Lab v. 1.194 p. 155. 

 

Figura 10. Tomado del Manual Tobii Pro Lab v. 1.194 p. 158. 

Esta posibilidad es relevante en el ámbito de la observación específicamente en la 
valoración de niños o de niñas en edades tempranas o de personas con algún tipo de 
afectación en el movimiento (parálisis cerebral, Parkinson, etc.). Un ejemplo de esta 
valoración con la tecnología spectrum de Tobii se puede consultar en la Figura 11 y en la 
Figura 12 (en este caso solo se analizarán las coordenadas en 2D, coordenadas x, y). Estos 

Figura 9. Tomado del Manual Tobii Pro Lab v. 1.194 p. 155.
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Esta posibilidad es relevante en el ámbito de la observación específicamente en 
la valoración de niños o de niñas en edades tempranas o de personas con algún tipo 
de afectación en el movimiento (parálisis cerebral, Parkinson, etc.). Un ejemplo de 
esta valoración con la tecnología spectrum de Tobii se puede consultar en la Figura 
11 y en la Figura 12 (en este caso solo se analizarán las coordenadas en 2D, coor-
denadas x, y). Estos equipos son muy potentes y tienen una alta capacidad de ajuste 
de los movimientos de la cabeza. Estos equipos pueden captar datos de movimiento 
ocular en frecuencias desde 60 Hz hasta 1200 Hz.
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También, la tecnología eye tracking se puede utilizar con personas con 
afectaciones en el movimiento como se ha indicado personas con discapacidad como por 
ejemplo parálisis cerebral, ELA, Síndrome de Rett o lesión medular. Un ejemplo, es la 
tecnología que aporta Tobii en Tobiidynavox en el dispositivo TD I-Series que es un 
dispositivo de voz liviano, rápido que controla totalmente los ojos, este tiene instalados 
distintos softwares como TD Snap (está basado en pictogramas con herramientas y 
recursos enfocados a satisfacer las necesidades comunicativas), Communicator 5, TD 
Control, TD Browse, TD Talk y TD Phone aporta también una ventana interlocutor que 
permite conversaciones cara a cara y seguimiento ocular al aire libre que permite utilizar 
el dispositivo con luz solar. TD Snap Core First ofrece un sistema de comunicación con 

Figura 11. Imagen tomada de Tobii información en web enlace 
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https://www.tobiipro.com/es/products/tobii-pro-spectrum/
https://www.tobiipro.com/es/aplicaciones/investigacion-cientifica/
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También, la tecnología eye tracking se puede utilizar con personas con afecta-
ciones en el movimiento como se ha indicado personas con discapacidad como por 
ejemplo parálisis cerebral, ELA, Síndrome de Rett o lesión medular. Un ejemplo, 
es la tecnología que aporta Tobii en Tobiidynavox en el dispositivo TD I-Series que 
es un dispositivo de voz liviano, rápido que controla totalmente los ojos, este tie-
ne instalados distintos softwares como TD Snap (está basado en pictogramas con 
herramientas y recursos enfocados a satisfacer las necesidades comunicativas), 
Communicator 5, TD Control, TD Browse, TD Talk y TD Phone aporta también 
una ventana interlocutor que permite conversaciones cara a cara y seguimiento 
ocular al aire libre que permite utilizar el dispositivo con luz solar. TD Snap Core 
First ofrece un sistema de comunicación con pictogramas y palabras basados en 
un vocabulario de palabras más frecuentes en cada idioma. Un ejemplo se puede 
consultar en la Figura 13.
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Figura 13. Imagen tomada de Tobii TD Snap enlace 

TD Snap Motor Plan, los comunicadores pueden acceder a palabras en tres selecciones o 
menos. Viene en tres tamaños de cuadrícula (30, 66 y 40) incluyen vocabulario sólido, 
cuidadosamente seleccionado para apoyar tanto a aprendices de lenguaje temprano como 
a comunicadores avanzados. Cada palabra aparece solo una vez con una ruta distintiva, o 
plan motor, para encontrarla. Con el tiempo, el comunicador localizará las palabras sin 
esfuerzo, lo que le permitirá al usuario concentrarse más en lo que quiere decir (ver Figura 
14). 

Figura 13. Imagen tomada de Tobii TD Snap enlace 

TD Snap Motor Plan, los comunicadores pueden acceder a palabras en tres 
selecciones o menos. Viene en tres tamaños de cuadrícula (30, 66 y 40) incluyen 
vocabulario sólido, cuidadosamente seleccionado para apoyar tanto a aprendices de 
lenguaje temprano como a comunicadores avanzados. Cada palabra aparece solo una 
vez con una ruta distintiva, o plan motor, para encontrarla. Con el tiempo, el comuni-
cador localizará las palabras sin esfuerzo, lo que le permitirá al usuario concentrarse 
más en lo que quiere decir (ver Figura 14).

https://es.tobiidynavox.com/pages/td-snap
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Figura 14. Tomado de TD Snap Motor Plan enlace 

TD Snap Express es un conjunto de páginas intuitivo diseñado para ser simple y fácil de 
usar. Este apoya el desarrollo de habilidades de comunicación y lenguaje mediante el uso 
de frases y palabras para construir mensajes. Con una navegación reducida y un 
vocabulario fácil de encontrar, cualquier usuario puede aprender a utilizarlo rápidamente, 
utilizando páginas temáticas para comunicarse (ver Figura 15). 

Figura 14. Tomado de TD Snap Motor Plan enlace 

TD Snap Express es un conjunto de páginas intuitivo diseñado para ser simple 
y fácil de usar. Este apoya el desarrollo de habilidades de comunicación y lenguaje 
mediante el uso de frases y palabras para construir mensajes. Con una navegación 
reducida y un vocabulario fácil de encontrar, cualquier usuario puede aprender a 
utilizarlo rápidamente, usando páginas temáticas para comunicarse (ver Figura 15).
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Figura 15. Imagen tomada de Tobii TD Snap Express enlace 

TD Snap Texto es una opción de CAA dentro de TD Snap. Está diseñado para personas 
que pueden leer y deletrear sin necesidad de pictogramas o que pueden estar en transición 
de los pictogramas a la lectoescritura. Las frases están organizadas por temas y los 
teclados ofrecen predicción de palabras (ver Figura 16). Además, esta opción incluye 
sistemas inteligentes (ver Figura 17). 

 

Figura 16.  Imagen tomada de Tobii TD Snap Express enlace. 

  

Figura 15. Imagen tomada de Tobii TD Snap Express enlace 

https://es.tobiidynavox.com/pages/td-snap
https://es.tobiidynavox.com/pages/td-snap
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TD Snap Texto es una opción de CAA dentro de TD Snap. Está diseñado para 
personas que pueden leer y deletrear sin necesidad de pictogramas o que pueden es-
tar en transición de los pictogramas a la lectoescritura. Las frases están organizadas 
por temas y los teclados ofrecen predicción de palabras (ver Figura 16). Además, 
esta opción incluye sistemas inteligentes (ver Figura 17).
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Figura 17.  Imagen tomada de Tobii TD Snap Express enlace. 

Otra posibilidad es la de utilizar gafas que integran un software eye tracking (ver Figura 
18). Las gafas pueden registrar información en un sistema de coordenadas 3D. La 
posición del ojo y los vectores de la mirada se calculan a partir de las imágenes del ojo 
sobre un modelo 3D. El punto de la mirada se calcula como el punto de vergencia entre 
los dos vectores de la mirada. 

 

Figura 18. Tomado del Manual Tobii Pro Lab v. 1.194 p. 159. 

 

Figura 17. Imagen tomada de Tobii TD Snap Express enlace 

https://es.tobiidynavox.com/pages/td-snap-text
https://es.tobiidynavox.com/pages/td-snap-text
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Otra posibilidad es la de utilizar gafas que integran un software eye tracking 
(ver Figura 18). Las gafas pueden registrar información en un sistema de coorde-
nadas 3D. La posición del ojo y los vectores de la mirada se calculan a partir de 
las imágenes del ojo sobre un modelo 3D. El punto de la mirada se calcula como el 
punto de vergencia entre los dos vectores de la mirada.
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Figura 18. Tomado del Manual Tobii Pro Lab v. 1.194 p. 159.

3.1.1.1.	 Pasos para iniciar el trabajo con la utilización de la tecnología 
eye tracking

El primer paso será la definición de las preguntas o hipótesis de investigación. 
En segundo lugar, la calibración del posicionamiento de la mirada del usuario (ver 
Figura 19). Este era un proceso complejo en momentos anteriores. Si bien, en la ac-
tualidad los dispositivos cada vez ofrecen alternativas más precisas de medición sin 
necesidad que el usuario se encuentre en posiciones demasiado estáticas e incomo-
das para la realización de la calibración y la posterior ejecución de la tarea.
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Figura 19. Parámetros para la medición del ajuste en calibración tomado del Tobii dynavox 
enlace. 

Un ejemplo de indicadores de calibración se puede consultar en la Figura 20, como se 
puede comprobar se establecen indicadores de exactitud (accuracy) y de precisión. 

 

Figura 20. Indicadores de calibración en un equipo Tobii Pro Lab (fuente propia). 

Asimismo, un ejemplo de cómo se traducen estos datos en una visualización de la 
calibración, se puede comprobar en la Figura 21. 

Figura 19. Parámetros para la medición del ajuste en calibración tomado del Tobii dynavox 
enlace 

https://es.tobiidynavox.com/pages/what-is-eye-tracking
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Un ejemplo de indicadores de calibración se puede consultar en la Figura 20, 
como se puede comprobar se establecen indicadores de exactitud (accuracy) y de 
precisión.
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Figura 21. Ejemplos de visualización de los puntos de calibración (fuente propia). 

En tercer lugar, se tiene que diseñar la tarea. Es importante definir qué se quiere medir y 
para qué. Los estímulos utilizados para definir las tareas pueden ser imágenes, 
documentos, información en web, información en pantalla o bien textos (ver Figura 22) 

 

Figura 22. Posibilidades de inclusión de tareas en un dispositivo Tobii Pro Lab v.24.21 (fuente 
propia). 

En cuarto lugar, se deben definir las características de los participantes. En la Figura 23 
se presenta un ejemplo. En este estudio se tuvieron en cuenta las siguientes variables: 
Tipo de titulación (Ingeniería vs. Ciencias de la Salud), Género (femenino vs. masculino) 
y tipo de visualización, en este caso de una web (con audio vs. sin audio). 
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En tercer lugar, se tiene que diseñar la tarea. Es importante definir qué se quiere 
medir y para qué. Los estímulos utilizados para definir las tareas pueden ser imágenes, 
documentos, información en web, información en pantalla o bien textos (ver Figura 22)
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Figura 23. Definición de las variables y de los parámetros en el estudio. 

Asimismo, antes de iniciar el estudio se habrá solicitado el consentimiento informado por 
escrito de los participantes. En este documento se reflejará el objeto del estudio, la 
autorización previa del Comité de Bioética de la Institución que lo avale y la cláusula de 
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es su voluntad. Este es un requisito imprescindible para asegurar el cumplimiento de la 
legislación sobre protección de datos tanto española como europea. 

A continuación, se iniciará la fase experimental propiamente dicha con todos aquellos 
participantes que han dado su consentimiento. Si bien, en el dispositivo de eye tracking 
nunca se deben introducir datos reales de filiación. Por ello, se debe anonimizar los 
nombres reales a través de la asignación de códigos. El proceso de anonimización solo lo 
debe controlar un investigador asignado para ello y esta relación se debe destruir una vez 

Figura 23. Definición de las variables y de los parámetros en el estudio.
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Asimismo, antes de iniciar el estudio se habrá solicitado el consentimiento in-
formado por escrito de los participantes. En este documento se reflejará el objeto 
del estudio, la autorización previa del Comité de Bioética de la Institución que lo 
avale y la cláusula de que en cualquier momento, el o la participante podrá dejar de 
participar en el estudio si es su voluntad. Este es un requisito imprescindible para 
asegurar el cumplimiento de la legislación sobre protección de datos tanto española 
como europea.

A continuación, se iniciará la fase experimental propiamente dicha con todos 
aquellos participantes que han dado su consentimiento. Si bien, en el dispositivo de 
eye tracking nunca se deben introducir datos reales de filiación. Por ello, se debe 
anonimizar los nombres reales a través de la asignación de códigos. El proceso de 
anonimización solo lo debe controlar un investigador asignado para ello y esta re-
lación se debe destruir una vez concluya la fase experimental, a fin de preservar la 
confidencialidad de los participantes (ver Figura 24).
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Figura 24. Proceso de anonimización de los datos de los participantes (fuente propia). 
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se puede comprobar un ejemplo de recogida de datos multicanal integrados de eye 
tracker, facial, voz y GSR. Asimismo, en la Figura 26 se presenta un ejemplo de 
integración de señales con EEG. 
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A continuación, se podría iniciar el desarrollo del experimento con cada parti-
cipante. Posteriormente, se abordará como se pueden incluir más dispositivos u op-
ciones para obtener más registros de forma integrada o conjunta, como son la imagen 
de la cara (a través de un software de reconocimiento facial se podrán analizar las 
expresiones emocionales asociadas a la ejecución la tarea en cada uno de los pasos 
de realización). También, se puede incluir un dispositivo de registro de respuesta 
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galvánica de la piel, galvanic skin response, (GSR), y de respuesta encefalográfica 
o, electroencefalograma (EEG), ambas con señal integrada dentro del dispositivo de 
eye tracking. En la Figura 25, se puede comprobar un ejemplo de recogida de datos 
multicanal integrados de eye tracker, facial, voz y GSR. Asimismo, en la Figura 26 
se presenta un ejemplo de integración de señales con EEG.
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Figura 25. Integración de señales de eye tracker, facial, sonido y de GSR (fuente propia). 

 

 

Figura 26. Integración de señales con EEG imagen de acceso abierto tomada de Bitbrain 
enlace. 

Seguidamente, se va a abordar el tipo de métricas que se pueden obtener con la tecnología 
eye tracking multicanal integrada. 
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Seguidamente, se va a abordar el tipo de métricas que se pueden obtener con la 
tecnología eye tracking multicanal integrada.

https://www.bitbrain.com/es/productos-neurotecnologia/software/sennslab
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3.1.2.	Métricas de registro en eye tracking y su significado en el 
procesamiento de la Información.

Las métricas que registra el dispositivo eye tracking son diversas. Estas se pue-
den clasificar en métricas estáticas y dinámicas (Sáiz-Manzanares et al., 2020). Las 
primeras se relacionan con los parámetros de fijación, sacada y mirada (glance). 
Todas ellas tienen distintas extensiones como son (frecuencia, velocidad, duración 
media, etc.). Respecto de las segundas, hacen referencia al registro del patrón po-
sicional de seguimiento ocular realizado, dependiendo del tipo de tecnología puede 
denominarse scan path. Los registros que se obtienen en este tipo de dispositivos 
pueden extraerse en distintos tipos de formatos, y cada uno de ellos aporta unas 
métricas. A continuación, se van a presentar distintos ejemplos: registros extraídos 
en un formato Interval-based Tabulator Separated Valu (TSV) file (ver Tabla 8); 
registros extraídos en formato AOI-based TSV file (ver Tabla 9). Esta funcionalidad 
se basa en la definición previa de las Áreas de Interés (AOI), estas se pueden definir 
como relevantes vs. no relevantes por el experimentador.

Tabla 8. Métricas posibles extraídas de eye tracking Tobii Pro Lab v.24.21 formato  
Interval-based TSV file.

Métrica Significado Unidad de medida

General
Participant variables Valores de los valores de los participantes
Timeline name
Stimulus variables Valor de los estímulos de cada variable
Interval metrics
Duration of interval La duración de un intervalo milisegundos
Start of interval Tiempo en el que empieza un intervalo milisegundos
Event metrics
Number of Events Número de eventos para cada intervalo frecuencia
Time first Event Tiempo inicial de cada evento por intervalo milisegundos
Last key press El último registro de cada keypress en el 

intervalo
milisegundos

AOI fixation metrics
Total duration of fixations Duración total de cada fijación dentro de una 

AOI en cada intervalo
milisegundos

Average duration of 
fixations

Duración media de la fijación dentro de una 
AOI durante un intervalo

milisegundos

Minimum duration of 
fixations

La duración de la fijación más corta dentro de 
un AOI durante un intervalo

milisegundos

Maximum duration of 
fixations

La duración de la fijación más larga dentro de 
un AOI durante un intervalo

milisegundos

Number of fixations Número de fijaciones que ocurren en una AOI 
durante un intervalo

frecuencia
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Métrica Significado Unidad de medida

Time to first fixation El tiempo de la primera fijación dentro de una 
AOI durante un intervalo

milisegundos

Duration of first fization La duración de la primera fijación dentro de 
una AOI durante un intervalo

milisegundos

Last AOI viewed La última AOI fijada durante un intervalo
AOI at Interval end La fijación en la AOI al final del intervalo
Average pupil diameter La media del diámetro de la pupila sin un 

AOI en un intervalo. Se calcula utilizando el 
resultado del diámetro de la pupila después de 
aplicar un filtro de diámetro de la pupila.

milímetros

AOI fixation metrics (ex-
clude partial fixations)
Total duration of whole 
fixations

La duración total de fijaciones dentro de una 
AOI durante un intervalo.

milisegundos

Average duration of whole 
fixations

La media de duración de las fijaciones dentro 
de una AOI durante un intervalo

milisegundos

Minimum duration of 
whole fixations

La duración de la fijación más corta dentro de 
una AOI durante un intervalo

milisegundos

Maximum duration of 
whole fixations

La duración de la fijación más larga dentro de 
una AOI durante un intervalo

milisegundos

Number of whole fixation Número de fijaciones que ocurren en una AOI 
durante un intervalo

frecuencia

Time to first whole fixation El tiempo de la primera fijación dentro de una 
AOI durante un intervalo

milisegundos

Duration of first whole 
fixation

La duración de la primera fijación dentro de 
una AOI durante un intervalo

milisegundos

Average whole-fixation 
pupil diameter

La media del diámetro de la pupila de toda la 
fijación en una muestra AOI en un intervalo. 
Calculada utilizando el resultado del diámetro 
de la pupila después de aplicar un filtro de 
diámetro de la pupila.

milímetros

AOI Visit metrics
Total duration Visit Total duración de las Visitas dentro de una 

AOI durante un intervalo
milisegundos

Average duration of Visit La media de duración de las visitas dentro de 
una AOI durante un intervalo

milisegundos

Minimum duration of Visit La duración de la visita más corta dentro de 
una AOI durante un intervalo

milisegundos

Maximum duration Visit La duración de la visita más larga dentro de 
una AOI durante un intervalo

milisegundos

Number of Visits Número de visitas frecuencia
Time to first Visit Tiempo de la primera visita milisegundos
Duration of first Visit Duración de la primera visita milisegundos
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Métrica Significado Unidad de medida

AOI Glance metrics AOI métricas mirada
Total duration of Glances Duración total de las miradas milisegundos
Average duration of 
Glances

Media de duración de las miradas milisegundos

Minimum duration of 
Glances

La duración más corta de la mirada dentro de 
una AOI durante un intervalo

milisegundos

Maximum duration 
Glances

La duración más larga de la mirada dentro de 
una AOI durante un intervalo

milisegundos

Number of Glances Número de miradas frecuencia
Time to first Glance Hora de la primera mirada milisegundos
Duration of first Glance Duración de la primera mirada milisegundos
AOI Click metrics
Number of mouse clicks Número de veces que se pulsa el botón 

izquierdo del ratón en una AOI durante un 
intervalo.

frecuencia

Time of first mouse click El tiempo transcurrido hasta que se pulsa 
por primera vez el botón izquierdo del ratón 
dentro de una AOI durante un intervalo.

milisegundos

Time from first fixation to 
mouse click

El tiempo transcurrido desde la primera fija-
ción hasta la primera vez que se pulsa el botón 
izquierdo del ratón dentro de una AOI durante 
un intervalo.

milisegundos

Number of mouse clicks & 
releases

Número de veces que se pulsa y suelta el 
botón izquierdo del ratón en la misma AOI 
durante un intervalo.

frecuencia

Time to first mouse click & 
release

El tiempo transcurrido hasta que se pulsa 
por primera vez el botón izquierdo del ratón 
dentro de una AOI durante un intervalo. Esta 
métrica requiere que también se suelte el 
botón del ratón dentro de la misma AOI.

milisegundos

Time from first fixations to 
mouse click & release

El tiempo transcurrido desde la primera fija-
ción hasta la primera vez que se pulsa el botón 
izquierdo del ratón dentro de una AOI durante 
un intervalo. Esta métrica requiere que el 
botón del ratón también se suelte dentro de la 
misma AOI.

milisegundos

GSR metrics
Average GSR La media de la señal galvanic skin response 

(GSR) después de filtrarse en un intervalo.
microsiemens

Number of SCR El número de skin conductance response 
(SCRs) para cada intervalo.

frecuencia

Amplitude of event related 
SCR

La amplitud de cada evento-related skin con-
ductace response (ER-SCR) en cada intervalo. 
ER-SCRs se calcula usando los datos filtrados 
de GSR.

microsiemens
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Métrica Significado Unidad de medida

Fixation metrics (exclude 
partial fixations)
Total duration of whole 
fixations

Duración total de las fijaciones durante un 
intervalo.

milisegundos

Average duration of whole 
fixations

Duración media de las fijaciones durante un 
intervalo.

milisegundos

Number of whole fixations Número total de fijaciones durante un 
intervalo.

frecuencia

Duration of first whole 
fixation

La duración de la primera fijación durante un 
intervalo.

milisegundos

Average whole-fixation 
pupil diameter

La media del diámetro de la pupila de la 
totalidad de más muestras de la fijación en 
un intervalo. Calculada usando el resultado 
del diámetro de la pupila aplicando filtro del 
diámetro de la pupila.

milímetros

Saccade metrics
Number of saccades Número de sacadas que ocurren durante este 

intervalo.
frecuencia

Average peak velocity of 
saccades

Media del pico de velocidad de todas las 
sacadas en este intervalo.

Grados/segundos

Minimum peak velocity of 
saccades

Mínimo del pico de velocidad de todas las 
sacadas en este intervalo.

Grados/segundos

Maximum peak velocity of 
saccades

Máximo del pico de velocidad de todas las 
sacadas en este intervalo.

Grados/segundos

Standard deviation of peak 
velocity of saccades

Desviación estándar del pico de velocidad de 
las sacadas en este intervalo.

Grados/segundos

Average amplitude of 
saccades

Media de la amplitud de todas las sacadas en 
este intervalo.

Grados

Minimum amplitude of 
saccades

La amplitud de la sacada con la amplitud más 
baja en este intervalo.

Grados

Maximum amplitude of 
saccades

La amplitud de la sacada con la amplitud más 
alta en este intervalo.

Grados

Total amplitude of saccades El total de la amplitud de todas las sacadas 
durante un intervalo.

Grados

Time to first saccade La hora de la primera sacada durante el 
intervalo.

milisegundos

Direction of first saccade La dirección de la primera sacada en el 
intervalo.

Grados

Peak velocity of first 
saccade

Pico de velocidad de la primera sacada. Grados/segundos

Average velocity of first 
saccade

La velocidad media de la primera sacada 
dentro de un intervalo.

Grados/segundos

Amplitude of first saccade La amplitud de la primera sacada en el 
intervalo.

Grados
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Métrica Significado Unidad de medida

AOI saccade metrics
Number of saccades in AOI Numero de sacadas durante una AOI durante 

el intervalo.
frecuencia

Time to entry saccade La duración hasta el inicio de la primera 
sacada que termina en un AOI durante un 
intervalo.

milisegundos

Time to exit saccade La duración hasta el inicio de la primera saca-
da que sale en un AOI durante un intervalo.

milisegundos

Peak velocity of entry 
saccade

Velocidad máxima de la sacada de entrada. Grados/segundos

Peak velocity of exit 
saccade

Velocidad máxima de la sacada de salida. Grados/segundos

Tabla 9. Métricas posibles extraídas de eye tracking Tobii Pro Lab v.24.21 formato AOI-
based TSV file.

Métrica Significado Unidad de medida

General
Participant variables Valores de los valores de los participantes
Timeline name
Interval Número de intervalos dentro de la AOI
AOI Número de AOI
Interval metrics
Duration of interval Duración de un intervalo milisegundos
Start of interval Hora de inicio del intervalo milisegundos
Event metrics
Time to first Event Inicio del primer evento milisegundos
Last key press Registro último del último keypress
AOI fixation metrics
Total duration of fixations Duración total de las fijaciones dentro de una 

AOI en un intervalo
milisegundos

Average duration of 
fixations

Duración media de las fijaciones dentro de 
una AOI durante un intervalo

milisegundos

Minimum duration of 
fixations

La duración más corta de una fijación dentro 
de una AOI durante un intervalo

milisegundos

Maximun duration of 
fixations

La duración más larga de una fijación dentro 
de una AOI durante un intervalo

milisegundos

Number of fixations Número de fijaciones dentro de una AOI 
durante un intervalo

frecuencia

Time to first fixation Hora de la primera fijación dentro en una AOI 
de un intervalo

milisegundos
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Métrica Significado Unidad de medida

Duration of first fixation La duración de la primera fijación dentro de 
una AOI durante un intervalo

milisegundos

Last AOI viewed Última AOI fijada durante un intervalo
AOI at Interval end La AOI fijada al final de un intervalo
Average pupil diameter La media del diámetro de la pupila de todas 

las muestras de fijación en una AOI en un in-
tervalo. Calculado utilizando el resultado del 
diámetro de la pupila aplicando un filtro.

milímetros

AOI fixation metrics (ex-
clude partial fixations)
Total duration of whole 
fixations

Duración total de las fijaciones dentro de una 
AOI durante un intervalo.

milisegundos

Average duration of whole 
fixations

Duración media de las fijaciones dentro de 
una AOI durante un intervalo.

milisegundos

Minimum duration of 
whole fixations

Duración de la fijación más corta dentro de 
una AOI durante un intervalo.

milisegundos

Maximum duration of 
whole fixations

Duración de la fijación más larga dentro de 
una AOI durante un intervalo.

milisegundos

Number of whole fixations Número de fijaciones que ocurren en una AOI 
durante un intervalo

frecuencia

Time of first whole fixation Hora de la primera fijación dentro de una AOI 
durante un intervalo

milisegundos

Duration of first whole 
fixation

Duración de la primera fijación dentro de una 
AOI en un intervalo

milisegundos

Average whole-fixation 
pupil diameter

Media del diámetro de la pupila de todas las 
muestras de fijaciones completas en una AOI 
en un intervalo.

milímetros

AOI visit metrics
Total duration of Visit Duración total de visitas dentro de una AOI en 

un intervalo
milisegundos

Average duration of Visit Duración total de las visitas dentro de una 
AOI en un intervalo.

milisegundos

Minimum duration of Visit Duración de la visita más corta dentro de una 
AOI en un intervalo.

milisegundos

Maximum duration of Visit Duración de la visita más larga dentro de una 
AOI en un intervalo.

milisegundos

Number of Visits Número de visitas dentro de una AOI en un 
intervalo

frecuencia

Time to first Visit Hora de la primera visita dentro de una AOI 
en un intervalo.

milisegundos

Duration of first Visit Duración de la primera visita dentro de una 
AOI en un intervalo.

milisegundos
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Métrica Significado Unidad de medida

AOI Glance metrics
Total duration Glances Duración total de las miradas dentro de una 

AOI en un intervalo.
milisegundos

Average duration of 
Glances

La duración media de las miradas dentro de 
una AOI en un intervalo.

milisegundos

Minimum duration Glances Duración de la mirada más corta dentro de 
una AOI en un intervalo.

milisegundos

Maximum duration 
Glances

Duración de la mirada más corta dentro de 
una AOI en un intervalo.

milisegundos

Number of Glances Número de miradas dentro de una AOI en un 
intervalo.

frecuencia

Time to first Glance Hora de inicio de la primera mirada dentro de 
una AOI en un intervalo.

milisegundos

Duration of first Glance Duración de la primera mirada dentro de una 
AOI en un intervalo.

milisegundos

AOI Click metrics
Number of mouse clicks Número de veces que se pulsa el botón izquier-

do del ratón en una AOI durante un intervalo.
frecuencia

Time of first mouse click Hora hasta que se pulsa el botón izquierdo del 
ratón en una AOI durante un intervalo

milisegundos

Time from first fixation to 
mouse click

Hora de la primera fijación en la primera 
pulsación del botón izquierdo del ratón en una 
AOI durante un intervalo.

milisegundos

Time from first fixation to 
mouse click

La hora desde la primera fijación la primera 
vez en la que se ha pulsado el botón izquierdo 
del ratón en una AOI durante un intervalo.

milisegundos

Number of mouse clicks & 
releases

Número de clics en la primera fijación la 
primera vez en la que se ha pulsado el botón 
izquierdo del ratón en una AOI durante un 
intervalo.

frecuencia

Time to first mouse clicks 
& releases

La hora desde la primera fijación desde la 
primera vez en la que se ha pulsado el botón 
izquierdo del ratón en una AOI durante un 
intervalo.

milisegundos

AOI saccade metrics
Number of saccades in AOI Número de sacadas dentro de una AOI en un 

intervalo.
frecuencia

Time to entry saccade Hora de la primera sacada dentro de una AOI 
en un intervalo.

milisegundos

Time to exit saccade Hora de la última sacada dentro de una AOI 
en un intervalo.

milisegundos

Peak velocity for entry 
saccade

Pico de velocidad dentro de la primera sacada 
dentro de una AOI en un intervalo.

grados/segundos

Peak velocity for exit 
saccade

Pico de velocidad dentro de la última sacada 
dentro de una AOI en un intervalo.

grados/segundos
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Métrica Significado Unidad de medida

AOI reading metrics
Character index Índice del AOI a nivel de carácter dentro de su 

AOI a nivel de palabra
posición

Word index Índice del AOI a nivel de palabra dentro de su 
AOI a nivel de palabra

posición

Sentence index Índice del AOI a nivel de sentencia dentro de 
su AOI a nivel de palabra

posición

AOI string Cadena de texto que contine una AOI
Text unit type Tipo de texto de la unidad: gráfico, palabra, 

sentencia.
Number of units Número de unidades frecuencia
First-pass first fixation 
duration

Duración de la primera fijación durante la 
primera pasada dentro de una AOI en un 
intervalo.

milisegundos

First-pass duration Duración total de las fijaciones durante la 
primera pasada dentro de un AOI durante un 
intervalo

milisegundos

Selective regression-path 
duration

Duración total de las fijaciones desde la 
primera fijación en esta AOI hasta que se 
produce una fijación en una AOI progresiva 
a ésta, durante un intervalo. Anteriormente 
conocida como duración Go-past.

milisegundos

First-pass regression Indica si el lector sale de la AOI con una 
regresión (1) o sigue leyendo progresivamente 
(0).

binaria

Total duration of fixations La duración total de las fijaciones dentro de la 
AOI durante un intervalo.

milisegundos

Regression-path duration La duración total de las fijaciones desde la 
primera fijación en esta área de interés hasta 
que se produce una fijación en una AOI pro-
gresiva a ésta, incluidas las fijaciones en áreas 
de interés regresivas, durante un intervalo.

milisegundos

Re-reading duration Duración de la trayectoria de regresión exclui-
das las fijaciones de la primera pasada durante 
un intervalo

milisegundos

También, se pueden extraer los registros en formato Excel, en este tipo de for-
mato se incluyen métricas de Interval metrics, Event metrics, AOI fixation metrics, 
AOI Visit metrics, AOI click metrics. Otros resultados que se pueden hallar son los 
relativos a datos: de calibración, validación y datos referentes a eyetracker times-
tamp, Gaze point 2D, Gaze direction, pupil diameter, pupil diameter, validity of eye 
data, eye position (3D) en format DACS, Gaze point con datos de las coordenadas 
normalizados, Assisted mapping gaze point, mouse position, Glavanic skin response; 
Eventos: Event, Eye movement en tiempo y en espacio, AOI hit, AOI inactivity, AOI 
visit, AOI glance, Skin Conductance Response e información media.
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Además, se puede visualizar una ejecución completa de cada participante, ya 
que graba toda la secuencia en vídeo, un ejemplo se puede consultar en la Figura 27. 
De igual modo, este dispositivo ofrece imágenes del mapa de calor (Heat Map) que 
se produce durante la ejecución de una tarea (ver Figura 28). Este se conforma con 
un registro acumulado de las frecuencias de posicionamiento de la mirada sobre el 
estímulo. Las zonas rojas indican una mayor frecuencia. De otro lado, también se 
pueden extraer métricas dinámicas tipo scan path que dan una imagen fija o dinámi-
ca del posicionamiento de la mirada en orden posicional dentro de las coordenadas 
cartesianas de la pantalla (ver Figura 29).
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Figura 27. Registro en vídeo del posicionamiento dinámico de la frecuencia dentro del estímulo 
(fuente propia). 
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Figura 28. Heat Map obtenido durante la ejecución de una actividad (fuente propia). 

 

Figura 29. Scan Path de la ejecución de un usuario durante una actividad (fuente propia). 

3.1.2.1. Significación de las métricas eye tracking con la medición de procesos 
cognitivos y metacognitivos. 

Investigadores del GIR DATAHES de la UBU en colaboración con investigadores 
del GIR ADMIRABLE de la UBU están desarrollando distintos estudios para definir la 
relación entre las métricas extraídas con el dispositivo eye tracking que incluye GSR y la 
interpretación de las estrategias cognitivas y metacognitivas que se ponen en marcha 
respecto de la ejecución de distinto tipo de tareas. Seguidamente, se van a presentar estos 
estudios. 
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Figura 29. Scan Path de la ejecución de un usuario durante una actividad (fuente propia).

3.1.2.1.	 Significación de las métricas eye tracking con la medición de 
procesos cognitivos y metacognitivos.

Investigadores del GIR DATAHES de la UBU en colaboración con investiga-
dores del GIR ADMIRABLE de la UBU están desarrollando distintos estudios para 
definir la relación entre las métricas extraídas con el dispositivo eye tracking que 
incluye GSR y la interpretación de las estrategias cognitivas y metacognitivas que se 
ponen en marcha respecto de la ejecución de distinto tipo de tareas. Seguidamente, 
se van a exponer los resultados de alguno de ellos.

Sáiz-Manzanares, M.C., Rodríguez-Díez, J.J., Marticorena, R., Zaparaín, M.J., 
y Cerezo, R. (2020). Lifelong Learning from Sustainable Education: An 
Analysis with Eye Tracking and Data Mining Techniques. Sustainability, 
12(5), 1-18. https://doi.org/10.3390/su12051970

Este estudio hace referencia a la utilización de la tecnología eye tracking para 
conocer el procesamiento de la información durante la ejecución de una tarea re-
lacionada con el ámbito de la Historia del Arte, se analizaba si existían diferencias 
significativas en distintos parámetros de registro en eye tracking y en la realización 
de una prueba de comprobación de conocimientos sobre lo representado en la tarea. 
Dicha tarea consistía en la visualización de un vídeo autorregulado, dentro del mis-
mo se diferenciaban áreas de interés relevantes vs. no relevantes. También, se utilizó 
la variable conocimientos previos (personas experimentadas en este ámbito de cono-
cimiento vs. no experimentadas) y la variable edad (personas jóvenes vs. personas 
de más edad en distintos intervalos). En este estudio se analizaron las métricas diná-
micas para ello, se debió de aplicar técnicas de Machine Learning no supervisadas 
de clustering. En concreto, se aplicaron métodos de string edit, específicamente los 
algoritmos de Uniform Distance model, City Block Distance y Educlidian Distance. 

https://investigacion.ubu.es/grupos/1812/detalle
https://investigacion.ubu.es/grupos/1817/detalle
https://doi.org/10.3390/su12051970
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En este caso el modelo que resultó más efectivo para la definición de la distancia 
entre los participantes fue el Uniform Distance model (ver Figura 30).
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Uniform Distance model City Block Distance model Euclidian Distance model 

Figura 30. Modelos de análisis de distancia métodos string edit (imágenes tomadas de Sáiz 
Manzanares et al., 2020) p. 12-13. 

También, se aplicó en este estudio un escalamiento multidimensional con los modelos de 
distancia, se halló en el modelo Uniform Distance model una agrupación más nítida de 
las distancias (ver Figura 31). 
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Figura 30. Modelos de análisis de distancia métodos string edit (imágenes tomadas de Sáiz 
Manzanares et al., 2020) p. 12-13.

También, se aplicó en este estudio un escalamiento multidimensional con los 
modelos de distancia, se halló en el modelo Uniform Distance model una agrupación 
más nítida de las distancias (ver Figura 31).
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Uniform Distance model City Block Distance model Euclidian Distance model 

Figura 31. Modelos de análisis de distancia métodos string edit (imágenes tomadas de Sáiz 
Manzanares et al., 2020) p. 14-15. 

Las conclusiones en este estudio fueron que la utilización de videos autorregulados para 
el aprendizaje, en este caso de la Historia del Arte, facilitaba mejores resultados de 
aprendizaje y mitigaba las diferencias entre los aprendices experimentados vs. noveles. 
De otro lado, la variable edad en personas experimentadas no tuvo efectos sobre los 
resultados de aprendizaje. 

En este estudio se utilizó un equipo de eye tracking iViewXTM, 
SMIExperimenterCenter3.0ySMI BeGazeTM de 60 Hz. En este caso se extrajeron 
métricas dinámicas de gaze point. Se aplicó un monitor con una resolución de 1680x1050. 

Sáiz-Manzanares, M.C., Payo-Hernanz, R., Zaparaín-Yáñez, M.J., Andres-López, G., 
Marticorena-Sánchez, R., Calvo-Rodríguez, A., Martín, C., y Rodríguez-Arribas, S. 
(2021). Eye-tracking Technology and Data-mining Techniques used for a Behavioral 
Analysis of Adults engaged in Learning Processes. Journal of Visualized Experiments, 
e62103. https://doi.org/10.3791/62103 

Este estudio hace referencia a la presentación de un protocolo para la utilización 
de la tecnología eye tracking en durante la ejecución de una tarea. En este estudio se 
utilizó un equipo de eye tracking iViewXTM, SMIExperimenterCenter3.0ySMI 
BeGazeTM de 60 Hz. En este caso se extrajeron métricas estáticas (fijaciones, sacadas, 
parpadeos y recorridos de exploración). Se aplicó un monitor con una resolución de 
1680x1050. Asimismo, se hace referencia a la extracción de la base de datos y la 
interpretación de los mismos a través de la utilización de técnicas de Machine Learning, 
en concreto se utilizó el software de data mining Orange. Los resultados hallados indican 
que la duración media de la fijación en los estímulos relevantes fue mayor en los 
participantes con conocimientos previos. Asimismo, el foco de atención de este grupo se 
centró en los puntos medios de la información. Se hallaron diferencias significativas en 
el procesamiento de la información. Si bien, esta diferencia no siempre se correspondía 
con la diferenciación previa de los grupos (aprendices experimentados vs. no 
experimentados; edad de los participantes; formación de los participantes), se hallaron 
clústeres que mostraron otros agrupamientos. Asimismo, se comprobó que la forma de 
presentación de la tarea (vídeo autorregulado a través de voz) facilitaba la 
homogenización de los resultados de aprendizaje. Este artículo aporta un vídeo 
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Las conclusiones en este estudio fueron que la utilización de videos autorre-
gulados para el aprendizaje, en este caso de la Historia del Arte, facilitaba mejores 
resultados de aprendizaje y mitigaba las diferencias entre los aprendices experimen-
tados vs. noveles. De otro lado, la variable edad en personas experimentadas no tuvo 
efectos sobre los resultados de aprendizaje.

En este estudio se utilizó un equipo de eye tracking iViewXTM, 
SMIExperimenterCenter3.0ySMI BeGazeTM de 60 Hz. En este caso se extrajeron mé-
tricas dinámicas de gaze point. Se aplicó un monitor con una resolución de 1680x1050.

Sáiz-Manzanares, M.C., Payo-Hernanz, R., Zaparaín-Yáñez, M.J., Andres-López, 
G., Marticorena-Sánchez, R., Calvo-Rodríguez, A., Martín, C., y Rodríguez-
Arribas, S. (2021). Eye-tracking Technology and Data-mining Techniques 
used for a Behavioral Analysis of Adults engaged in Learning Processes. 
Journal of Visualized Experiments, e62103. https://doi.org/10.3791/62103
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En este estudio se presenta un protocolo para el uso de la tecnología eye tracking 
durante la ejecución de una tarea. Para ello, se empleó un sistema de eye tracking 
iViewX™, junto con el software SMI Experimenter Center 3.0 y SMI BeGaze™ 
a una frecuencia de 60 Hz. En este caso se extrajeron métricas estáticas (fijacio-
nes, sacadas, parpadeos y recorridos de exploración). Se aplicó un monitor con una 
resolución de 1680x1050. Asimismo, se hace referencia a la extracción de la base 
de datos y la interpretación de los mismos a través de la utilización de técnicas de 
Machine Learning, en concreto se utilizó el software de data mining Orange. Los 
resultados hallados indican que la duración media de la fijación en los estímulos rele-
vantes fue mayor en los participantes con conocimientos previos. Asimismo, el foco 
de atención de este grupo se centró en los puntos medios de la información. Se ha-
llaron diferencias significativas en el procesamiento de la información. Si bien esta 
diferencia no siempre coincidió con la clasificación previa de los grupos (aprendices 
experimentados vs. no experimentados, edad de los participantes o su formación), 
se identificaron clústeres que revelaron otros tipos de agrupamientos. Asimismo, se 
comprobó que la forma de presentación de la tarea (vídeo autorregulado a través 
de voz) facilitaba la homogenización de los resultados de aprendizaje. Este artículo 
aporta un vídeo explicativo sobre todo el proceso de uso de la tecnología eye trac-
king incluida la extracción y el procesamiento de los datos.

Sáiz-Manzanares, M.C., Ramos Pérez, I., Arnaiz-Rodríguez, Á., Rodríguez-Arribas, 
S., Almeida, L., y Martin, C.F. (2021). Analysis of the learning process throu-
gh eye tracking technology and feature selection techniques. Applied Sciences, 
11, 6157, 1-24. https://doi.org/10.3390/app11136157

Este estudio introduce a la relación entre las métricas que se pueden obtener con 
la tecnología eye tracking y las implicaciones en la interpretación en los procesos de 
aprendizaje, estas se pueden comprobar en la Tabla 3. En este estudio se utilizó un 
equipo de eye tracking iViewXTM, SMIExperimenterCenter3.0ySMI BeGazeTM de 
60 Hz. En este caso se extrajeron métricas estáticas (fijaciones, sacadas, parpadeos y 
recorridos de exploración). Se aplicó un monitor con una resolución de 1680x1050. Se 
trabajó sobre una tarea de vídeo autorregulado sobre conocimientos de Historia del Arte 
y se consideraron las variables de conocimientos previos vs. no conocimientos previos; 
edad, género, nivel educativo, tipo de actividad (empleado, desempleado, estudiante). 
También, se aplicó una prueba de conocimientos adquiridos durante la tarea que fue la 
resolución de un puzle. De igual modo, para la contrastación de hipótesis se utilizaron 
técnicas de Machine Learning supervisadas y no supervisadas. Concretamente, en este 
estudio se utilizaron técnicas de aprendizaje automático supervisado para la clasifi-
cación (se aplicaron los algoritmos gain ratio, symmetrical uncertainty y chi-square) 
y no supervisado para la agrupación (se aplicaron los algoritmos k-means ++, fuzzy 
k-means y DBSCAN). Los análisis se realizaron con el lenguaje de programación R. 
Las conclusiones indican que el uso de la técnica de eye tracking proporciona pruebas 
sobre el procesamiento de la información en distintos tipos de participantes durante 
la resolución de diferentes tareas. Este hecho facilita la investigación en ciencias del 

https://doi.org/10.3390/app11136157
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comportamiento. Trabajar con esta tecnología abre muchos campos de investigación 
aplicados a numerosos entornos (aprendizaje de la lectoescritura, razonamiento lógi-
co-matemático, física, conducción de vehículos, conducción de máquinas peligrosas, 
marketing, etc.). También puede utilizarse para averiguar cómo aprenden las personas 
con diferentes dificultades de aprendizaje (TDAH, TEA, etc.). El objetivo final sería 
mejorar su estilo de aprendizaje y hacer propuestas de intervención personalizadas en 
función de las necesidades observadas en cada uno de ellos. Además, esta tecnología 
puede utilizarse para mejorar las prácticas de conducción y la prevención de acciden-
tes en el manejo de maquinaria peligrosa. Esta formación se está llevando a cabo en 
escenarios de realidad virtual y/o aumentada que aplican la tecnología de seguimiento 
ocular. Todas estas posibilidades abren un importante campo a abordar en futuras in-
vestigaciones. Otro aspecto relevante a tener en cuenta es la forma en que se presentan 
las tareas. En este estudio se ha demostrado que el uso de tareas autorreguladas facilita 
el procesamiento de la información y homogeneiza las respuestas de aprendizaje entre 
aprendices noveles vs. expertos. Además, este estudio ha demostrado que el uso de 
diferentes técnicas de Machine Learning, como la selección de características, facilita 
el conocimiento de los atributos que pueden ser más significativos para la investiga-
ción. Esta funcionalidad es muy útil en investigaciones en las que se dispone de un 
gran volumen de datos. Además, si esta técnica se combina con el uso de técnicas de 
aprendizaje automático y estadística tradicional, los resultados pueden aportar más 
información, especialmente relacionada con futuras líneas de investigación. De hecho, 
en este estudio se ha comprobado que algunas de las variables consideradas como 
independientes en el estudio estadístico también fueron seleccionadas como rasgos 
relevantes en el estudio que aplicó técnicas de aprendizaje supervisado de selección 
de instancias [por ejemplo, conocimiento previo, tipo de participante (alumno vs. pro-
fesor)]. Sin embargo, las técnicas de selección de rasgos también han proporcionado 
pistas a tener en cuenta en futuros estudios sobre la influencia de otras variables (por 
ejemplo, la variable género, la situación laboral, el nivel educativo y el campo de cono-
cimiento). En esta línea, el uso de diferentes algoritmos para probar tanto la selección 
de características, como el clustering en el aprendizaje no supervisado, proporcionará 
al investigador un repertorio de resultados cuyo ajuste puede ser contrastado con el 
Ajusted Rang Index (ARI). Esto permitirá conocer las agrupaciones entre el estudian-
tado. Asimismo, facilitaría aislar los patrones de los tipos de aprendices para poder 
ofrecer respuestas educativas personalizadas. Por otro lado, la utilización de métodos 
de análisis estadístico permitirá conocer si las variables señaladas como independien-
tes tienen efecto sobre las variables dependientes. En resumen, quizá el procedimiento 
más útil sea, en primer lugar, aplicar las técnicas de aprendizaje supervisado de selec-
ción características y, a continuación, en función de las variables detectadas, plantear 
las preguntas de investigación y aplicar los análisis estadísticos pertinentes para con-
trastarlas. Por último, los resultados de este estudio deben tomarse con cautela, ya que 
presenta una serie de limitaciones. Estas se relacionan principalmente con el tamaño 
de la muestra, que es pequeño, y con la selección de la muestra, que se llevó a cabo 
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mediante un muestreo de conveniencia. Sin embargo, hay que tener en cuenta que la 
utilización de la metodología del eye tracking requiere un control muy exhaustivo del 
desarrollo de las tareas en los espacios del laboratorio, aspecto que dificulta que las 
muestras sean amplias y aleatorias. Otro de los elementos limitantes de este trabajo 
es que se ha utilizado una tarea muy específica (adquisición de los conceptos de los 
orígenes de los monasterios en Europa y verificación de esta adquisición mediante la 
resolución de un crucigrama) en un entorno de aprendizaje concreto (historia del arte). 
Por este motivo, en las secciones Discusión y Conclusiones se han indicado posibles 
estudios futuros. En la Tabla 1º se pueden consultar los parámetros más representati-
vos de las métricas extraídas con eye tracking y su correspondencia con las fases de 
procesamiento de la información.

Tabla 10. Parámetros más representativos que pueden obtenerse con la técnica de segui-
miento ocular y su importancia en el tratamiento de la información (información traducida 

y adaptada de Sáiz-Manzanares et al. (2021) p. 3-4.

Métrica Acrónimo Significado de la métrica Implicaciones en el aprendizaje

Fixation Count FC Cuenta el número de enlaces 
específicos en AOIs en todos 
los estímulos

El mayor número y frecuencia de 
fijaciones en un estímulo puede indicar 
que aprendiz tiene menos conocimientos 
sobre la tarea o dificultades para discrim-
inar la información relevante frente a 
la no relevante. Se trata de medidas del 
rendimiento global de la búsqueda (Shen 
et al., 2007).

Fixation 
Frequency 
count

FFC

Fixation 
Duration

FD Duración de la fijación Da una indicación del grado de interés y 
de los tiempos de reacción del aprendiz. 
Una mayor duración suele asociarse a un 
procesamiento cognitivo más profundo 
y un mayor esfuerzo. Para los textos 
más complicados, el usuario tiene una 
duración media de fijación más larga. 
La duración de la fijación proporciona 
información sobre el proceso de búsqueda 
(Shen et al., 2007).

Fixation 
Duration 
Average

AFD Media de duración de la 
fijación

Las fijaciones más largas hacen referen-
cia a que el aprendiz pasa más tiempo 
analizando e interpretando el contenido 
de la información dentro de las diferentes 
Áreas de Interés (AOI). Se considera que 
la duración media oscila entre 200 ms y 
260 ms.

Fixation 
Duration 
Maximum

FDMa Duración mínima de la 
fijación

Se refieren a los tiempos de reacción.

Fixation 
Duration 
Minimum

FDMi Duración máxima de la 
fijación
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Métrica Acrónimo Significado de la métrica Implicaciones en el aprendizaje

Fixation 
Dispersion 
Total

FDT Suma de todas las disper-
siones de las fijaciones en 
X e Y

Se refiere a la percepción de la infor-
mación en diferentes componentes de la 
tarea.

Fixation 
Dispersion 
Average

FDA Suma de todas las disper-
siones de fijación en X e Y 
dividida por el número de 
fijaciones en la prueba

Analiza las dispersiones en cada una de 
las fijaciones en los diferentes estímulos.

Saccades 
Count

SC Número total de sacadas en 
cada uno de los estímulos

Un mayor número de sacadas implica 
mayores estrategias de búsqueda. Cuanto 
mayor es la amplitud de la sacada, menor 
es el esfuerzo cognitivo. También puede 
referirse a problemas de comprensión de 
la información.

Saccade 
Frequency 
count

SFC Suma de todas las sacadas Se refieren a la frecuencia de uso de 
sacadas relacionadas con estrategias de 
búsqueda..

Saccade 
Duration Total

SDT Suma de la duración de 
todas las sacadas

Saccades 
Duration 
Average

SDA Duración media de las saca-
das en cada AOI

Permite discriminar entre aprendi-
ces dependientes del campo vs. no 
dependientes.

Saccade 
Duration 
Maximum

SDMa Duración máxima de la 
sacada

Se refieren a la percepción de la infor-
mación en diferentes componentes de la 
tarea.

Saccade 
Duration 
Minimum

SDMi Duración mínima de la 
sacada

Saccade 
Amplitude 
Total

SAT Suma de la amplitud de 
todas las sacadas

Los aprendices noveles tienden a tener 
sacadas más cortas.

Saccade 
Amplitude 
Maximum

SAMa Máximo de amplitud 
sacádica

Saccade 
Amplitude 
Minimum

SAMi Mínimo de la amplitud 
sacádica

Saccade 
Velocity Total

SVT Suma de la velocidad de 
todas las sacadas

Están directamente relacionados con la 
velocidad de procesamiento de la infor-
mación al pasar de un elemento a otro 
dentro de un estímulo.

Saccade 
Velocity 
Maximum

SVMa Valor máximo de la velocid-
ad sacádica

Saccade 
Velocity 
Minimum

SVMi Valor mínimo de la velocid-
ad sacádica
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Métrica Acrónimo Significado de la métrica Implicaciones en el aprendizaje

Saccade 
Latency 
Average

SLA Es igual al tiempo trans-
currido entre el final de 
una sacada y el inicio de la 
siguiente

Está directamente relacionada con los 
tiempos de reacción en el procesamiento 
de la información. La latencia sacádica 
inicial proporciona información temporal 
detallada sobre el proceso de búsqueda 
(Shen et al., 2007).

Blink Count BC Número de parpadeos en la 
prueba

Está relacionada con la velocidad de 
procesamiento de la información. Los 
aprendices noveles presentan una frecuen-
cia más alta.

Blink 
Frequency 
count

BFC Número de parpadeos de 
todas las pruebas seleccio-
nadas por segundo dividido 
por el número de pruebas 
seleccionadas

Los parpadeos están relacionados con el 
procesamiento de la información durante 
la exposición a un estímulo para generar 
la siguiente acción. Los aprendices con 
un procesamiento de la información más 
rápido pueden tener parpadeos más cortos 
y de menor duración. Sin embargo, esta 
acción también puede producirse cuando 
existen problemas de déficit de atención. 
Habrá que comparar estos resultados con 
los obtenidos en las otras métricas para 
ajustar la explicación de estos resulta-
dos dentro del análisis de un patrón de 
aprendizaje.

Blink Duration 
Total

BDT Suma de la duración de 
todos los parpadeos de 
las pruebas seleccionadas 
dividida por el número de 
pruebas seleccionadas

Blink Duration 
Average

BDA La suma de la duración de 
todos los parpadeos de todas 
las pruebas seleccionadas 
dividida por el número de 
pruebas seleccionadas

Blink Duration 
Maximum

BDMa Duración máxima de los 
parpadeos registrados

Blink Duration 
Minimum

BDMi La duración más corta de los 
parpadeos registrados

Scan Path 
Length

SPL Proporciona un patrón de 
comportamiento de apren-
dizaje para cada usuario

El estudio de los patrones de compor-
tamiento del aprendizaje facilitará las 
orientaciones del profesor en relación con 
la forma de aprender. La longitud de la 
trayectoria de exploración proporciona in-
formación sobre los tiempos de reacción 
en tareas sin duración predeterminada

Sáiz-Manzanares, M.C., Marticorena-Sánchez, R.; Escolar-Llamazares, M.C., 
González-Díez, I., Martín Antón, L.J. (2024). Using integrated multimodal 
technology: a way to personalised learning in Health Sciences and Biomedical 
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engineering Students. Appl. Sci., 14(16), 7017. https://doi.org/10.3390/
app14167017

Este estudio hace referencia a la utilización de la tecnología eye tracking mul-
ticanal integrada. En concreto, aplica eye tracking junto con GSR. Asimismo, utiliza 
para el análisis técnicas de fusión de datos. Estas refieren al registro de datos desde 
distintas fuentes y el procesamiento de los mismos. De igual, modo esta investiga-
ción incluye la novedad de analizar la carga de trabajo percibida por el estudiantado 
participante. Dicha carga se mide a través de biomarcadores (fijaciones, sacadas, 
diámetro de la pupila, GSR). También, se incluyen datos sobre los resultados de 
aprendizaje. En este trabajo se trabaja con estudiantes de ciencias de la salud y de 
ingeniería biomédica. Además, se analiza la satisfacción percibida de estudiantado 
con la tarea. En este caso, se hallaron diferencias significativas entre el alumnado 
en algunos de los biomarcadores relacionados con la duración del tiempo de ejecu-
ción, los resultados de aprendizaje y la forma de visualización de la tarea (auditiva 
y visual vs. visual). La satisfacción percibida por la utilización de entornos virtuales 
autorregulados para el aprendizaje fue alta. Referente al análisis entre las métricas 
integradas (eye tracking y GSR), su significado, las implicaciones neurológicas y las 
implicaciones cognitivas y metacognitivas se puede comprobar en la Tabla 4. En este 
estudio se utilizó un dispositivo eye tracking Tobii pro lab version 1.194 with 64 Hz 
y un dispositivo de GSR Shimmer3 GSR+ (galvanic skin response) que era compa-
tible con el dispositivo de Tobii. Esta integración ofrece la extracción de métricas 
de single-channel galvanic skin response data acquisition (Electrodermal Resistance 
Measurement—EDR/electrodermal activity (EDA)). The GSR+ unit is suitable for 
measuring the electrical characteristics or conductance of skin.

https://doi.org/10.3390/app14167017
https://doi.org/10.3390/app14167017
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Tabla 11. Indicadores de registro multimodal en el tratamiento de la información.  
(información traducida y adaptada de Sáiz-Manzanares et al. (2024) p. 3.
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3.1.3.	Sincronización de eye tracking con otros registros

a) Registro de la Respuesta Psicogalvánica de la piel (GSR)
En la actualidad la tecnología eye tracking permite la sincronización de 

la información del seguimiento visual con otros canales de registro como son 
la Respuesta Psicogalvánica de la Piel (GSR). La teoría tradicional del análi-
sis de la respuesta galvánica de la piel está basada en la suposición de que la 
resistencia de la piel varía con el estado de las glándulas sudoríparas. La su-
doración del cuerpo humano está regulada por el Sistema Nervioso Autónomo 
(SNA). En particular, si la rama simpática (SNS) del SNA está muy excitada, 
la actividad de la glándula sudorípara también aumenta, lo que a su vez incre-
menta la conductancia de la piel, y viceversa. De esta forma, la conductancia de 
la piel puede ser una medida de las respuestas del SNS humano. Este sistema 
está directamente involucrado en la regulación del comportamiento emocional. 
Otros estudios han destacado la relación entre la señal GSR y algunos estados 
físicos que pueden influir en los estados mentales, como por ejemplo el estrés, 
el cansancio y el compromiso con la actividad. La señal GSR se registra con dos 
electrodos colocados en el segundo y tercer dedo de una mano. La variación de 
una corriente aplicada de bajo voltaje entre los dos electrodos se utiliza como 
medida de la actividad electrodérmica (EDA). La tecnología Bitbrain para GSR, 
compatible con los sistemas Tobii, permite la integración de señales y ofrece las 
siguientes medidas:

Activación. Definición: Nivel basal de activación fisiológica producida 
por un estímulo o situación. La activación emocional puede deberse a una res-
puesta emocional positiva o negativa. La activación se expresa en porcentajes 
basados en una línea de base definida durante los estímulos de calibración. Los 
valores inferiores a 0 se asocian a un estado de relajación o calma. Los valo-
res superiores a 0 se asocian a un estado de excitación. Un valor de -100 % se 
refiere a la máxima respuesta de relajación observada durante la calibración. 
Un valor del 100 % se refiere a la máxima respuesta observada en respuesta 
a los medios de calibración. Es posible un valor superior al 100 % si la reacción 
calculada supera la medida durante la calibración.

Impacto. Definición: El impacto emocional mide el número de cambios 
puntuales y la intensidad de los mismos en el estado emocional producido 
por un estímulo, un acontecimiento externo o en la realización de una tarea. 
En otras palabras, el impacto identifica algo que es sorprendente o produce 
emoción o estrés. El impacto se expresa como un porcentaje. Un valor del 0 % 
significa que no hay impacto. El 100 % equivale al valor medido en respues-
ta a los medios de calibración. Es posible que el valor sea superior al 100 % si 
la reacción calculada supera la medida durante la calibración.
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En la Figura 32 se muestra un ejemplo del dispositivo de GSR, el posiciona-
miento de los dedos para el registro de la señal de respuesta psicogalvánica y en 
análisis de la señal recogida con la tecnología de Bitbrain.
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Figura 32. Dispositivo GSR, posición de los dedos para el registro, ejemplo de registro tomado 
de Bitbrain. 

b) Registro Encefalográfico (EEG). 

Dependiendo del dispositivo los registros EEG pueden registrar información de 8, 
16, 32 y 64 canales a través de electrodos secos o semisecos. Estos sensores están 
diseñados para la monitorización versátil respecto de una gran variedad de entornos 
incluyendo un alto nivel de precisión incluso en situaciones de movimiento. Un ejemplo 
de las áreas de registro se puede comprobar en la Figura 32, tomada de una información 
libre de Bitbrain. En concreto, en esta imagen se incluyen 16 canales en áreas de 
desarrollo, frontal, prefrontal y occipital. 

 

Figura 33. Imagen del registro en EEG con 16 canales tomado de Bitbrain enlace. 

Las métricas que se pueden extraer de EEG son:  

Engagement: Definición: Es una medida del grado de implicación o conexión entre el 
participante y el estímulo o la tarea. Es un indicador más complejo que la atención, ya 
que un participante puede estar atento a una tarea, aunque la información presentada no 
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información presentada no sea de su interés. La implicación se expresa como un 
porcentaje. Un valor cercano al 0 % indica que no hay conexión o vínculo con los 
estímulos. Un valor cercano al 100% indica una alta implicación con los estímulos 
o la tarea.

Valencia. Definición: Mide el grado de atracción experimentado en respues-
ta a un estímulo o a una situación determinada, desde una reacción positiva/
agradable hasta una reacción negativa/desagradable. La valencia se expresa como 
un porcentaje. Un valor del 100% positivo o negativo equivale al valor medido 
en respuesta al medio de calibración. Es posible que el nivel de valencia supere 
el 100% (positivo o negativo) si la reacción calculada supera la medida durante la 
calibración.

Memorización. Definición: Este indicador mide la intensidad de los proce-
sos cognitivos relacionados con la formación de recuerdos futuros durante la 
presentación de estímulos o durante una experiencia. Capta el grado de almace-
namiento, codificación y retención en la memoria. La memorización se expresa 
como un porcentaje. Un valor del 0% indica que la posibilidad de que el estímulo 
sea recordado es baja. Un valor cercano al 100% indica una alta posibilidad de 
que el estímulo sea retenido en la memoria del participante.

Workload. Definición: La carga de trabajo mide el enfoque neurológico, o 
la concentración de un participante cuando se le presentan estímulos o durante 
experiencias. En otras palabras, representa el uso de recursos cognitivos para 
llevar a cabo una tarea o visualizar un estímulo. La carga de trabajo se expresa 
en porcentajes. Los valores cercanos al 0% indican que el participante está muy 
distraído, mientras que un valor cercano al 100% indica que está muy atento 
al estímulo.

En la Figura 34 se presenta un ejemplo de dispositivo EEG de 12 canales en 
tipología diadema de electrodos secos y la recogida de señal en métricas de engage-
ment, valencia, memorización y workload.
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Figura 34. Dispositivo tipo diadema con electrodos secos tecnología de Bitbrain y registro de 
señales. 

Todas las métricas se pueden integrar y analizar en el registro de los distintos canales de 
registro, un ejemplo se puede consultar en la Figura 34. 
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Figura 34. Dispositivo tipo diadema con electrodos secos tecnología de Bitbrain y registro 
de señales.

Todas las métricas se pueden integrar y analizar en el registro de los distintos 
canales de registro, un ejemplo se puede consultar en la Figura 34.
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Figura 35.  Análisis de registro multicanal tomado de Bitbrain web. 

En este enlace se puede acceder a registros en acceso abierto 
https://www.bitbrain.com/es/science/eeg-datasets  

Otros análisis de interés 

https://www.bitbrain.com/es  

https://www.bitbrain.com/es/productos-neurotecnologia/software  

https://www.bitbrain.com/es/blog/category/investigacion  

https://www.bitbrain.com/blog/how-to-select-dry-eeg-headset  

Seguidamente, se presentan estudios científicos en los que se ha utilizado esta tecnología 
de canales integrados en el ámbito de la clínica y la rehabilitación: 

Escolano, C., López-Larraz, E., Minguez, J., y Montesano, L. (2022). Brain-Computer Interface-
Based Neurorehabilitation: From the Lab to the Users’ Home. En D. Torricelli, M. Akay, y J.L. 
Pons. (Eds.), Converging Clinical and Engineering Research on Neurorehabilitation IV. ICNR 
2020. Biosystems & Biorobotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-
70316-5_91 

Perez-Valero, E., Morillas, C., Lopez-Gordo, M.A., y Minguillon, J. (2023). Supporting the 
Detection of Early Alzheimer’s Disease with a Four-Channel EEG Analysis. International 
Journal of Neural Systems, 33(4), 2350021. https://doi.org/10.1142/S0129065723500211  

Schwarz, A., Escolano, C., Montesano, L., y Müller-Putz, G.R. (2020) Analyzing and Decoding 
Natural Reach-and-Grasp Actions Using Gel, Water and Dry EEG Systems. Front. Neurosci., 14, 
849. https://doi.org/10.3389/fnins.2020.00849  
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https://www.bitbrain.com/es/productos-neurotecnologia/software
https://www.bitbrain.com/es/blog/category/investigacion
https://www.bitbrain.com/blog/how-to-select-dry-eeg-headset
Seguidamente, se presentan estudios científicos en los que se ha utilizado esta 

tecnología de canales integrados en el ámbito de la clínica y la rehabilitación:

Escolano, C., López-Larraz, E., Minguez, J., y Montesano, L. (2022). Brain-Computer 
Interface-Based Neurorehabilitation: From the Lab to the Users’ Home. En D. 
Torricelli, M. Akay, y J.L. Pons. (Eds.), Converging Clinical and Engineering 
Research on Neurorehabilitation IV. ICNR 2020. Biosystems & Biorobotics, 
vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-70316-5_91

Perez-Valero, E., Morillas, C., Lopez-Gordo, M.A., y Minguillon, J. (2023). 
Supporting the Detection of Early Alzheimer’s Disease with a Four-Channel 
EEG Analysis. International Journal of Neural Systems, 33(4), 2350021. ht-
tps://doi.org/10.1142/S0129065723500211

Schwarz, A., Escolano, C., Montesano, L., y Müller-Putz, G.R. (2020) Analyzing and 
Decoding Natural Reach-and-Grasp Actions Using Gel, Water and Dry EEG 
Systems. Front. Neurosci., 14, 849. https://doi.org/10.3389/fnins.2020.00849

También, en este enlace se pueden consultar distintos proyectos de investiga-
ción https://www.bitbrain.com/es/science

https://www.bitbrain.com/es/science/eeg-datasets
https://www.bitbrain.com/es/science/eeg-datasets
https://www.bitbrain.com/es
https://www.bitbrain.com/es/productos-neurotecnologia/software
https://www.bitbrain.com/es/blog/category/investigacion
https://www.bitbrain.com/blog/how-to-select-dry-eeg-headset
https://doi.org/10.1007/978-3-030-70316-5_91
https://doi.org/10.1142/S0129065723500211
https://doi.org/10.1142/S0129065723500211
https://doi.org/10.3389/fnins.2020.00849
https://www.bitbrain.com/es/science
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3.1.4.	Relación de las medidas de registro encefalográfico con el 
procesamiento cognitivo.

Siguiendo a Sterman y Chartier (2023) p. 104 señalan que la electroencefalogra-
fía es una ciencia relativamente joven. Hace cien años, aún no se había establecido 
que existiera actividad eléctrica en el cerebro humano. En 1875, Richard Caton fue 
el primero en informar de una observación de actividad eléctrica en los cerebros de 
monos y conejos, aunque las técnicas disponibles en ese momento no le permitieron 
registrar estas formas de onda para la posteridad. Caton realizó sus observaciones uti-
lizando un dispositivo llamado galvanómetro de espejo de Thomson (Caton, 1877). 
Posteriormente, Hans Berger, se considera el padre de la electroencefalografía moder-
na ya que fue el primero en registrar el EEG en humanos (Figura 35) durante su trabajo 
como profesor de Psiquiatría en la Universidad de Jena en Alemania. Asimismo, su tra-
bajo anterior había ya incluido mediciones precisas de las pulsaciones cerebrales tanto 
en animales como en humanos y, más tarde, la medición de la temperatura cerebral 
(Libenson, 2024). Hans Berger fue un Neurólogo alemán discípulo de Otto Ludwig 
Binswanger (1852-1929) en la clínica psiquiátrica de la universidad junto con Oskar 
Vogt (1870-1959) y Korbinian Brodmann (1868-1918). Berger fue jefe de la Unidad 
de Psiquiatría de la Universidad de Jena. En su investigación inicial, el objetivo prin-
cipal fue la búsqueda de la correlación entre la actividad objetiva del cerebro y los 
fenómenos psíquicos subjetivos. Investigó la influencia de los latidos del corazón, la 
respiración, las funciones vasomotoras y la posición de la cabeza y el cuerpo sobre las 
pulsaciones cerebrales. Posteriormente, el Dr. Berger intentó descubrir una correlación 
entre la temperatura del cerebro y los procesos psíquicos. Seguidamente, se centró 
en la demostración de la actividad eléctrica en el cerebro humano. A partir de 1925, 
Berger modificó su metodología y se especializó en registrar las fluctuaciones espontá-
neas en el potencial eléctrico. Su primera publicación sobre electroencefalografía fue 
el 22 de abril de 1929, y la fecha del descubrimiento del electroencefalograma humano 
se data 6 de julio de 1924. En la Figura 36 se puede consultar la máquina utilizada por 
Berger y su trabajo docente en neuropsiquiatría.
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Figura 36. Hans Berger en estudios de neuropsiquiatría (imágenes tomadas de acceso libre). 

Este recurso supuso un hito en el estudio del cerebro humano tanto en su funcionamiento 
«normal» como en su funcionamiento patológico y también ha servido para estudiar el 
funcionamiento diferencial en distintos procesos de resolución de problemas dependiendo 
de las características personales de los usuarios. Seguidamente, se describirá de forma 
breve las funciones asociadas al funcionamiento de los distintos lóbulos cerebrales. Para 
ello, se ha consultado la información en los siguientes manuales. 

Lóbulo frontal funciones: 

El lóbulo frontal tiene una localización rostral a la cisura central y dorsal a la cisura lateral. 
Este es el lóbulo de mayor tamaño y ocupa aproximadamente un tercio del hemisferio. 
Dicho lóbulo incluye las circunvoluciones: precentral, localizada verticalmente y tres 
circunvoluciones organizadas horizontalmente. Su función es la de activar y controlar los 
movimientos en la mitad contralateral del cuerpo. El área situada inmediatamente rostral 
a la cisura precentral es la corteza premotora, que hace referencia a los movimientos 
complejos y hábiles. La porción anterior restante del lóbulo es la corteza prefrontal, esta 
hace referencia al razonamiento, pensamiento abstracto, el autocontrol, la toma de 
decisiones, la planificación y las habilidades pragmáticas. En el lóbulo frontal hay 3 tres 
grandes circunvoluciones organizadas horizontalmente: la superior, la media y la inferior. 
Se encuentran situadas las en el lóbulo prefrontal las áreas 9, 10, 11, 12, 44, 46 de Broca, 
relacionadas con el lenguaje, las áreas 44 y 45 se relacionan con la función motora del 
lenguaje. El lóbulo frontal alberga las áreas cerebrales 4 (relacionada con motores), 6 y 8 
(relacionadas con los movimientos oculares) y las áreas 1, 2 y 3 (relacionadas con 
aspectos sensitivos). Se relaciona con funciones motoras excitatorias e inhibitorias y 
supresoras. Una representación de las áreas de Brodmann se puede consultar en la Figura 
36. 

Figura 36. Hans Berger en estudios de neuropsiquiatría  
(imágenes tomadas de acceso libre).
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Este recurso supuso un hito en el estudio del cerebro humano tanto en su funcio-
namiento «normal» como en su funcionamiento patológico y también ha servido para 
estudiar el funcionamiento diferencial en distintos procesos de resolución de proble-
mas dependiendo de las características personales de los usuarios. Seguidamente, se 
describirá de forma breve las funciones asociadas al funcionamiento de los distintos ló-
bulos cerebrales. Para ello, se ha consultado la información en los siguientes manuales:

Pérez Pérez, D. (1978). Fundamentos neurológicos de la conducta. Madrid: Ediciones 
del Castillo

Kahle, W., Leonhardt, H., Platzer, W. (1977). Sistema nervioso y órganos de los 
sentidos. Barcelona: Omega

Lóbulo frontal funciones:
El lóbulo frontal tiene una localización rostral a la cisura central y dorsal a la cisura 

lateral. Este es el lóbulo de mayor tamaño y ocupa aproximadamente un tercio del hemis-
ferio. Dicho lóbulo incluye las circunvoluciones: precentral, localizada verticalmente y 
tres circunvoluciones organizadas horizontalmente. Su función es la de activar y contro-
lar los movimientos en la mitad contralateral del cuerpo. El área situada inmediatamente 
rostral a la cisura precentral es la corteza premotora, que hace referencia a los movimien-
tos complejos y hábiles. La porción anterior restante del lóbulo es la corteza prefrontal, 
esta hace referencia al razonamiento, pensamiento abstracto, el autocontrol, la toma de 
decisiones, la planificación y las habilidades pragmáticas. En el lóbulo frontal hay 3 tres 
grandes circunvoluciones organizadas horizontalmente: la superior, la media y la infe-
rior. Se encuentran situadas las en el lóbulo prefrontal las áreas 9, 10, 11, 12, 44, 46 de 
Broca, relacionadas con el lenguaje, las áreas 44 y 45 se relacionan con la función motora 
del lenguaje. El lóbulo frontal alberga las áreas cerebrales 4 (relacionada con motores), 6 
y 8 (relacionadas con los movimientos oculares) y las áreas 1, 2 y 3 (relacionadas con as-
pectos sensitivos). Se relaciona con funciones motoras excitatorias e inhibitorias y supre-
soras. Una representación de las áreas de Brodmann se puede consultar en la Figura 37.
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Figura 36. Áreas de Brodmann (esta foto de Autor desconocido está bajo licencia CC BY-SA). 

Lóbulo Frontal y Prefrontal funciones 

Asimismo, en la Figura 37 se puede consultar el posicionamiento de los electrodos en los 
lóbulos frontales y prefrontales. En la Figura 38 se presenta el posicionamiento de los 
electrodos en los lóbulos parietales y parietooccipitales. Finalmente, en la Figura 39 se 
puede consultar el posicionamiento de los electrodos en los lóbulos parietooccipitales y 
occipitales, todos ellos descritos con la tecnología Bitbrain. 

 

Fp1 = polo frontal 
izquierdo 
Fp2 = polo frontal derecho 
AF7 = anterior frontal 
AF8 = anterior frontal 
F3 = Frontal 
F4 = Frontal 

 

 Figura 37. Áreas de Brodmann  
(esta foto de Autor desconocido está bajo licencia CC BY-SA).
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Lóbulo Frontal y Prefrontal funciones
Asimismo, en la Figura 38 se puede consultar el posicionamiento de los 

electrodos en los lóbulos frontales y prefrontales. En la Figura 39 se presenta el 
posicionamiento de los electrodos en los lóbulos parietales y parietooccipitales. 
Finalmente, en la Figura 40 se puede consultar el posicionamiento de los elec-
trodos en los lóbulos parietooccipitales y occipitales, todos ellos descritos con la 
tecnología Bitbrain.
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Figura 36. Áreas de Brodmann (esta foto de Autor desconocido está bajo licencia CC BY-SA). 

Lóbulo Frontal y Prefrontal funciones 

Asimismo, en la Figura 37 se puede consultar el posicionamiento de los electrodos en los 
lóbulos frontales y prefrontales. En la Figura 38 se presenta el posicionamiento de los 
electrodos en los lóbulos parietales y parietooccipitales. Finalmente, en la Figura 39 se 
puede consultar el posicionamiento de los electrodos en los lóbulos parietooccipitales y 
occipitales, todos ellos descritos con la tecnología Bitbrain. 

 

Fp1 = polo frontal 
izquierdo 
Fp2 = polo frontal derecho 
AF7 = anterior frontal 
AF8 = anterior frontal 
F3 = Frontal 
F4 = Frontal 

 

 

Fp1 = polo frontal izquierdo
Fp2 = polo frontal derecho
AF7 = anterior frontal
AF8 = anterior frontal
F3 = Frontal
F4 = Frontal

Funciones: referencia al razonamiento, pensamiento abstracto, el autocontrol, la toma de 
decisiones, la planificación y las habilidades pragmáticas.

Figura 38. Lóbulos frontal y prefrontal, canales de registro en EEG formulación 
internacional y resumen de las funciones cognitivas (imagen de acceso libre tomada de 

Bitbrain, destacado propio)

Lóbulo parietal funciones
El lóbulo pariental, está localizado entre el lóbulo frontal y el occipital. Este,está 

especialmente relacionado con la sensibilidad somática (áreas 5 y 7). El análisis y la 
integración de la información sensitiva en el lóbulo parietal inferior hace referencia 
a las experiencias perceptivas complejas.
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Funciones: referencia al razonamiento, pensamiento abstracto, el autocontrol, la toma 
de decisiones, la planificación y las habilidades pragmáticas. 

Figura 37. Lóbulos frontal y prefrontal, canales de registro en EEG formulación internacional y 
resumen de las funciones cognitivas (imagen de acceso libre tomada de Bitbrain, destacado 

propio) 

Lóbulo parietal funciones 

El lóbulo pariental, está localizado entre el lóbulo frontal y el occipital. Este,está 
especialmente relacionado con la sensibilidad somática (áreas 5 y 7). El análisis y la 
integración de la información sensitiva en el lóbulo parietal inferior hace referencia a las 
experiencias perceptivas complejas. 

  

P3 = Parietal 
P4 = Parietal 
PO7 = Parietal Occipital 
PO8 = Parietal Occipital 

Funciones: relación con la sensibilidad somática (áreas 5 y 7). El análisis y la 
integración de la información sensitiva en el lóbulo parietal inferior hace referencia a 
las experiencias perceptivas complejas. 

Figura 38.  Lóbulos parietal y parietooccipital, canales de registro en EEG formulación 
internacional y resumen de las funciones cognitivas  (imagen de acceso libre tomada de 

Bitbrain estacado propio) 

Lóbulo occipital funciones 

El lóbulo occipital, hace referencia a las áreas visuales primaria y secundaria. Su situación 
se enmarca desde la cisura parietoccipital hasta la escotadura preoccipital. Se sitúan las 
áreas 17 y 18 de Brodmann, comparte el área 19 con el lóbulo parietal. La actividad 
fundamental es visual a nivel de color, de formas y de movimientos. Esta información se 
incorpora para contribuir a ajustes posturales, relación retino foveal. Dominancia con el 
lóbulo izquierdo e interrelación entre prefrontalidad y occipitalidad con dominio de la 
primera. 

 

P3 = Parietal
P4 = Parietal
PO7 = Parietal Occipital
PO8 = Parietal Occipital

Funciones: relación con la sensibilidad somática (áreas 5 y 7). El análisis y la integración 
de la información sensitiva en el lóbulo parietal inferior hace referencia a las experiencias 
perceptivas complejas.

Figura 39. Lóbulos parietal y parietooccipital, canales de registro en EEG formulación 
internacional y resumen de las funciones cognitivas (imagen de acceso libre tomada de 

Bitbrain estacado propio)

Lóbulo occipital funciones
El lóbulo occipital, hace referencia a las áreas visuales primaria y secundaria. 

Su situación se enmarca desde la cisura parietoccipital hasta la escotadura preoccipi-
tal. Se sitúan las áreas 17 y 18 de Brodmann, comparte el área 19 con el lóbulo parie-
tal. La actividad fundamental es visual a nivel de color, de formas y de movimientos. 
Esta información se incorpora para contribuir a ajustes posturales, relación retino 
foveal. Dominancia con el lóbulo izquierdo e interrelación entre prefrontalidad y 
occipitalidad con dominio de la primera.
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PO7 = Parietal Occipital 
PO8 = Parietal Occipital 
O1 = Occipital 
O2 = Occipital 

Funciones: la actividad fundamental es visual a nivel de color, de formas y de 
movimientos. Esta información se incorpora para contribuir a ajustes posturales, 
relación retino foveal. 

Figura 39. Lóbulos parietooccipital y occipital, canales de registro en EEG formulación 
internacional y resumen de las funciones cognitivas (imagen de acceso libre tomada de Bitbrain 

estacado propio) 

Además, es este posicionamiento en la arquitectura cerebral se puede obtener información 
acerca de las ondas cerebrales que se producen durante la realización de diferentes tareas. 
El análisis de los registros de EEG que habitualmente se registran en microvoltios (μV). 
Seguidamente, se pueden transformar a ondas cerebrales si se dispone de los timestamps 
a través de la Transformada de Fourier. 

 Una vez transformadas las señales, es posible identificar qué tipo de onda cerebral utiliza 
el usuario durante la resolución de una tarea o la realización de una actividad. A 
continuación, se repasará la información relativa a las ondas cerebrales.ondas gamma (γ) 
son un patrón de oscilación neuronal que tiene lugar en los seres humanos, cuya 
frecuencia oscila entre los 30 Hz-100 Hz, aunque su presentación más habitual es de 40 
Hz. Estas podrían estar implicadas en el proceso de percepción consciente, pero no hay 
acuerdo unánime al respecto. En la Figura 40 se puede consultar una representación 
gráfica de las mismas. 

PO7 = Parietal Occipital
PO8 = Parietal Occipital
O1 = Occipital
O2 = Occipital

Funciones: la actividad fundamental es visual a nivel de color, de formas y de movimientos. 
Esta información se incorpora para contribuir a ajustes posturales, relación retino foveal.

Figura 40. Lóbulos parietooccipital y occipital, canales de registro en EEG formulación 
internacional y resumen de las funciones cognitivas (imagen de acceso libre tomada de 

Bitbrain estacado propio)

Además, es este posicionamiento en la arquitectura cerebral se puede obtener 
información acerca de las ondas cerebrales que se producen durante la realización de 
diferentes tareas. El análisis de los registros de EEG que habitualmente se registran 
en microvoltios (μV). Seguidamente, se pueden transformar a ondas cerebrales si se 
dispone de los timestamps a través de la Transformada de Fourier.

 Una vez transformadas las señales, es posible identificar qué tipo de onda ce-
rebral utiliza el usuario durante la resolución de una tarea o la realización de una 
actividad. A continuación, se repasará la información relativa a las ondas cerebrales.
Ondas gamma (γ) son un patrón de oscilación neuronal que tiene lugar en los seres 
humanos, cuya frecuencia oscila entre los 30 Hz-100 Hz, aunque su presentación 
más habitual es de 40 Hz. Estas podrían estar implicadas en el proceso de percep-
ción consciente, pero no hay acuerdo unánime al respecto. En la Figura 41 se puede 
consultar una representación gráfica de las mismas.
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Figura 40. Representación gráfica de las ondas gamma tomada de Bitbrain. 

ondas beta (β) son oscilaciones electromagnéticas en el segundo rango más alto de 
frecuencia 13 Hz-30 Hz, siendo ondas gamma las del primer rango, y se detectan en el 
cerebro humano a través de un electroencefalograma. Están asociadas con etapas de 
«sueño nulo», donde se está despertando y consciente, las ondas beta son más frecuentes 
en comparación con las ondas delta, alfa y theta. En la Figura 41 se puede consultar una 
representación gráfica de las mismas. 

 

Figura 41. Representación gráfica de las ondas gamma tomada de Bitbrain.

Ondas beta (β) son oscilaciones electromagnéticas en el segundo rango más 
alto de frecuencia 13 Hz-30 Hz, siendo ondas gamma las del primer rango, y se de-
tectan en el cerebro humano a través de un electroencefalograma. Están asociadas 
con etapas de «sueño nulo», donde se está despertando y consciente. Las ondas beta 
son más frecuentes en comparación con las ondas delta, alfa y theta. En la Figura 42 
se puede consultar una representación gráfica de las mismas.
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Figura 41. Representación gráfica de las ondas beta tomada de Bitbrain. 

ondas alpha (α) son oscilaciones electromagnéticas en el rango de frecuencias de 8 Hz-
13 Hz que surgen de la actividad eléctrica sincrónica y coherente, también son 
llamadas «ondas de Berger», en memoria de Hans Berger, el primer investigador que 
aplicó la electroencefalografía a seres humanos. Las ondas alfa son comúnmente 
detectadas usando un electroencefalograma (EEG) o un magnetoencefalograma (MEG), 
y se originan sobre todo en el lóbulo occipital durante períodos de relajación, con los 
ojos cerrados, pero todavía despierto. Se piensa que representan la actividad de la 
corteza visual en un estado de reposo. Estas ondas se enlentecen al quedarse dormido 
y se aceleran al abrir los ojos, al moverse o incluso al pensar en la intención. En la 
Figura 42 se puede consultar una representación gráfica de las mismas. 

 

Figura 42. Representación gráfica de las ondas beta tomada de Bitbrain.
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Ondas alpha (α) son oscilaciones electromagnéticas en el rango de frecuen-
cias de 8 Hz-13 Hz que surgen de la actividad eléctrica sincrónica y coherente, 
también son llamadas «ondas de Berger», en memoria de Hans Berger, el primer 
investigador que aplicó la electroencefalografía a seres humanos. Las ondas alfa son 
comúnmente detectadas usando un electroencefalograma (EEG) o un magnetoence-
falograma (MEG), y se originan sobre todo en el lóbulo occipital durante períodos 
de relajación, con los ojos cerrados, pero todavía despierto. Se piensa que re-
presentan la actividad de la corteza visual en un estado de reposo. Estas ondas 
se enlentecen al quedarse dormido y se aceleran al abrir los ojos, al moverse o 
incluso al pensar en la intención. En la Figura 43 se puede consultar una represen-
tación gráfica de las mismas.
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Figura 42. Representación gráfica de las ondas alpha tomada de Bitbrain. 

ondas theta (θ) refieren la actividad entre 4 Hz-8 Hz. Las ondas en el rango theta 
generalmente se consideran anormales en el EEG adulto durante la vigilia; sin embargo, 
la aparición de ondas theta es uno de los sellos distintivos del inicio de la somnolencia 
normal. Las ondas theta suelen ser de bajo voltaje y pueden aparecer en cualquier área 
del cerebro. Las ondas theta también pueden verse en las regiones temporales durante la 
somnolencia y, en otros, pueden verse de forma difusa. En general, se generan tras la 
interacción entre los lóbulos temporal y frontal. Los sonidos binaurales basados en ondas 
theta están recomendados para asimilar nueva información, sobre todo en estudiantes 
de edad avanzada, aunque puede aplicarse también a adolescentes. Las ondas theta, 
promueven la relajación y el sueño, tanto despierto como dormido. En la Figura 43 se 
puede consultar una representación gráfica de las mismas. 

Figura 43. Representación gráfica de las ondas alpha tomada de Bitbrain.

Ondas theta (θ) refieren la actividad entre 4 Hz-8 Hz. Las ondas en el rango 
theta generalmente se consideran anormales en el EEG adulto durante la vigilia; sin 
embargo, la aparición de ondas theta es uno de los sellos distintivos del inicio de la 
somnolencia normal. Las ondas theta suelen ser de bajo voltaje y pueden aparecer 
en cualquier área del cerebro. Las ondas theta también pueden verse en las regiones 
temporales durante la somnolencia y, en otros, pueden verse de forma difusa. En 
general, se generan tras la interacción entre los lóbulos temporal y frontal. Los so-
nidos binaurales basados en ondas theta están recomendados para asimilar nueva 
información, sobre todo en estudiantes de edad avanzada, aunque puede aplicarse 
también a adolescentes. Las ondas theta, promueven la relajación y el sueño, tanto 
despierto como dormido. En la Figura 44 se puede consultar una representación 
gráfica de las mismas.
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Figura 43. Representación gráfica de las ondas Theta tomada de Bitbrain. 

ondas delta (δ) son resultado de la representación de la actividad cerebral frente al 
tiempo de sueño. Estas, presentan una periodicidad en rango de frecuencias de 0,5 Hz-4 
Hz. Normalmente se asocian con etapas de sueño profundo. En la Figura 44 se puede 
consultar una representación gráfica de las mismas. 

 

Figura 44. Representación gráfica de las ondas Theta tomada de Bitbrain.

Ondas delta (δ)  son resultado de la representación de la actividad cerebral 
frente al tiempo de sueño. Estas, presentan una periodicidad en rango de frecuen-
cias de 0,5 Hz-4 Hz. Normalmente se asocian con etapas de sueño profundo. En la 
Figura 45 se puede consultar una representación gráfica de las mismas.
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Figura 44. Representación gráfica de las ondas Delta tomada de Bitbrain. 

En síntesis, los datos que se desprenden de los registros multicanal integrados precisan 
un preprocesamiento realizando acciones de limpieza y de eliminación de ruido y 
posteriormente un procesamiento de dicha información para su transformación en señales 
interpretables. En la Figura 45, se presenta un resumen del proceso. 

Figura 45. Representación gráfica de las ondas Delta tomada de Bitbrain.
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En síntesis, los datos que se desprenden de los registros multicanal integrados 
precisan un preprocesamiento realizando acciones de limpieza y de eliminación de 
ruido y posteriormente un procesamiento de dicha información para su transforma-
ción en señales interpretables. En la Figura 46, se presenta un resumen del proceso.
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Figura 45. Procesamiento de datos en el análisis de señales multicanal integradas. 

No obstante, el uso de estos dispositivos de señal integrada puede ofrecer al investigador 
o al terapeuta información ya procesada de una forma más sencilla. Seguidamente, se van 
a presentar ejemplos. 

Se parte de una tarea sobre reconocimiento de emociones, se trabaja con imágenes de 
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Figura 46. Representación de emociones imágenes fuente propia Sáiz-Manzanares (2025). 
propia http://hdl.handle.net/10259/10225  

 

En la Figura 47, se presenta un análisis de los biosensores en distintas métricas de GSR 
respecto de la medición de impacto recogido en las cinco diapositivas en las que se 
representaban las cinco emociones en cinco sujetos experimentales representado en un 
gráfico de barras con análisis de la desviación típica. 
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En la Figura 48, se presenta un análisis de los biosensores en distintas métricas 
de GSR respecto de la medición de impacto recogido en las cinco diapositivas en las 
que se representaban las cinco emociones en cinco sujetos experimentales represen-
tado en un gráfico de barras con análisis de la desviación típica.
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Figura 47. Representación del análisis del impacto en la percepción de distintas emociones 
(imagen fuente propia) 

En las Figuras 48, 49, 50 y 51 se presenta el mismo análisis respecto de las métricas de 
engagement, memorización, valencia y carga de trabajo recogidas con EEG. 

 

Figura 48. Representación del análisis del engagement en la percepción de distintas emociones 
(imagen fuente propia) 
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En las Figuras 49, 50, 51 y 52 se presenta el mismo análisis respecto de las 
métricas de engagement, memorización, valencia y carga de trabajo recogidas con 
EEG.
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Figura 49. Representación del análisis del engagement en la percepción de distintas 
emociones (imagen fuente propia)
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Figura 49. Representación del análisis de la memorización en la percepción de distintas 
emociones (imagen fuente propia) 

 

Figura 50. Representación del análisis de la valencia en la percepción de distintas emociones 
(imagen fuente propia) 

Figura 50. Representación del análisis de la memorización en la percepción de distintas 
emociones (imagen fuente propia)
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Figura 49. Representación del análisis de la memorización en la percepción de distintas 
emociones (imagen fuente propia) 

 

Figura 50. Representación del análisis de la valencia en la percepción de distintas emociones 
(imagen fuente propia) 

Figura 51. Representación del análisis de la valencia en la percepción de distintas 
emociones (imagen fuente propia)
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Figura 51. Representación del análisis de la carga de trabajo en la percepción de distintas 
emociones (imagen fuente propia) 

Asimismo, dentro de cada tarea, en este caso imagen, se pueden establecer distintas áreas 
de interés. Estas son la delimitación de elementos relevantes vs. no relevantes en la 
percepción de las imágenes de la representación de emociones. Se puede conocer la 
frecuencia de acceso a cada área de interés. Por ejemplo, en la Figura 52, Figura 53, 
Figura 54, Figura 55 se puede ver el análisis de las distintas emociones en las distintas 
áreas de interés. 

 

Figura 52. Análisis de las áreas de interés en la emoción 1 (imagen fuente propia) 

 

Figura 52. Representación del análisis de la carga de trabajo en la percepción de distintas 
emociones (imagen fuente propia)

Asimismo, dentro de cada tarea, en este caso imagen, se pueden establecer 
distintas áreas de interés. Estas son la delimitación de elementos relevantes vs. no 
relevantes en la percepción de las imágenes de la representación de emociones. Se 
puede conocer la frecuencia de acceso a cada área de interés. Por ejemplo, en las 
Figuras 53-57 se puede ver el análisis de las distintas emociones en las distintas áreas 
de interés.
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Figura 53. Análisis de las áreas de interés en la emoción 1 (imagen fuente propia)
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Figura 53. Análisis de las áreas de interés en la emoción 2 (imagen fuente propia). 

 

Figura 54. Análisis de las áreas de interés en la emoción 3 (imagen fuente propia). 

 

Figura 54. Análisis de las áreas de interés en la emoción 2 (imagen fuente propia).
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Figura 53. Análisis de las áreas de interés en la emoción 2 (imagen fuente propia). 

 

Figura 54. Análisis de las áreas de interés en la emoción 3 (imagen fuente propia). 

 

Figura 55. Análisis de las áreas de interés en la emoción 3 (imagen fuente propia).
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Figura 55. Análisis de las áreas de interés en la emoción 4 (imagen fuente propia). 

 

Figura 56. Análisis de las áreas de interés en la emoción 5 (imagen fuente propia). 

Respecto del sensor de eye tracking fijo se pueden extraer distintos gráficos: mapa 
de calor (ver Figura 57), mapa de focalización (ver Figura 58), mapa de trayectoria 
(Figura 59), mapa de biométricas (ver Figura 60) y mapa de tiempo (ver Figura 61). 

Figura 56. Análisis de las áreas de interés en la emoción 4 (imagen fuente propia).
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Figura 56. Análisis de las áreas de interés en la emoción 5 (imagen fuente propia). 

Respecto del sensor de eye tracking fijo se pueden extraer distintos gráficos: mapa 
de calor (ver Figura 57), mapa de focalización (ver Figura 58), mapa de trayectoria 
(Figura 59), mapa de biométricas (ver Figura 60) y mapa de tiempo (ver Figura 61). 

Figura 57. Análisis de las áreas de interés en la emoción 5 (imagen fuente propia).

Respecto del sensor de eye tracking fijo se pueden extraer distintos gráficos: 
mapa de calor (ver Figura 58), mapa de focalización (ver Figura 59), mapa de tra-
yectoria (ver Figura 60), mapa de biométricas (ver Figura 61) y mapa de tiempo (ver 
Figura 62).
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Figura 57. Mapa de calor en el área de interés de triángulo facial (imagen fuente propia). 

 

Figura 58. Mapa de focalización en el área de interés de triángulo facial (imagen fuente 
propia). 

 

Figura 58. Mapa de calor en el área de interés de triángulo facial (imagen fuente propia).
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Figura 57. Mapa de calor en el área de interés de triángulo facial (imagen fuente propia). 

 

Figura 58. Mapa de focalización en el área de interés de triángulo facial (imagen fuente 
propia). 

 

Figura 59. Mapa de focalización en el área de interés de triángulo facial (imagen fuente 
propia).
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Figura 59. Mapa de trayectoria en el área de interés de triángulo facial (imagen fuente propia). 

 

Figura 60. Mapa de biométricas en el área de interés de triángulo facial (imagen fuente 
propia). 

Figura 60. Mapa de trayectoria en el área de interés de triángulo facial (imagen fuente 
propia).
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Figura 59. Mapa de trayectoria en el área de interés de triángulo facial (imagen fuente propia). 

 

Figura 60. Mapa de biométricas en el área de interés de triángulo facial (imagen fuente 
propia). 

Figura 61. Mapa de biométricas en el área de interés de triángulo facial (imagen fuente 
propia).
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Figura 61. Mapa de tiempo en el área de interés de triángulo facial (imagen fuente propia). 

3.1.5. Marcadores biométricos aplicación a la evaluación e intervención psicológica. 

Los resultados de estudios recientes sobre el uso de medidas biométricas aplicadas 
al análisis del procesamiento de la información son prometedores. Las medidas 
biométricas permiten capturar los comportamientos inconscientes e involuntarios de las 
personas (Borgianni y Maccioni, 2020). El uso de las medidas biométricas es útil para 
conocer las formas de procesamiento de la información y las respuestas emocionales en 
humanos. También, se están realizando distintos estudios para comprobar la efectividad 
de la aplicación de diferentes técnicas de Machine Learning respecto de la precisión en 
el análisis de los resultados de los distintos registros biométricos (Borgianni y Maccioni, 
2020). Concretamente, se ha encontrado una alta efectividad de las técnicas de 
aprendizaje automático de regresión respecto del uso de los algoritmos Naive Bayes y los 
algoritmos de árbol de decisión J48 y Random Forest (ver Módulo IV.1). 

 
Seguidamente, se presentan una serie de estudios que pueden orientar el trabajo de los 
psicólogos en este campo. 
 
Wadhwa, H., Dhir, K., y Deswal, L. (2025). Applicability of eye tracking technology in 
virtual keyboard for human-computer interactions. Next Generation Computing and 
Information Systems - Proceedings of the 2nd International Conference on Next-
Generation Computing and Information Systems, ICNGCIS 2023, pp. 80–87. 

Abstract 
The vast field of Human-Computer Interaction, or HCI, which is primarily concerned 
with the interactions between people and computers, used to be solely concerned with 
scientific testing in the past. But nowadays it also designs user-focused interfaces and 
aids in the creation of smart surroundings. We have discussed the detailed applications of 
HCI. However, a lot of difficulties arise in implementing environment friendly solutions 
as a result of these advancements in HCI. It has been related to eudaimonia, which is the 
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cerned with scientific testing in the past. But nowadays it also designs user-focused 
interfaces and aids in the creation of smart surroundings. We have discussed the 
detailed applications of HCI. However, a lot of difficulties arise in implementing en-
vironment friendly solutions as a result of these advancements in HCI. It has been re-
lated to eudaimonia, which is the concept of feeling meaningfulness, realizing one’s 
potential. Moreover, practically any area may now apply HCI, including industrial 
design, psychology, sociology, and computer science. Further, we analyzed the evo-
lution of HCI over the past decade. Developments in HCI research have also led to 
the invention of the eye tracking control-based system. The use of an eye-tracking 
system to enhance learning processes and facilitate accurate and efficient visual re-
cognition of geospatial data has also been covered in this study. In addition, a typing 
experiment is carried out where participants are given access to a virtual keyboard in 
order to better understand how this technology might improve users’ accuracy and 
speed when typing. The Technology Acceptance Model (TAM), which is used in 
this experiment, allows us to determine whether or not consumers are adopting the 
suggested technology based on responses to the TAM questionnaire. The majority of 
users deemed this system to be helpful, simple to use, and understandable, based on 
the experiment’s outcomes and the TAM questionnaire. The investigation revealed 
that while female participants’ average accuracy was lower than male participants’, 
male participants’ average speed was higher. Later in the paper, we have elaborated 
challenges of HCI, a few of which are ethics, privacy, security, accessibility, learning 
and creativity, etc.

Golbabaei, S., y Borhani, K. (2024). Nearsighted empathy: exploring the effect of 
empathy on distance perception, with eye movements as modulators. Sci Rep, 
14, 25146 https://doi.org/10.1038/s41598-024-76731-0

Abstract
Empathy, a cornerstone of social interaction, involves shared representation, 

eliciting vicarious emotions. However, its influence on shared perceptual represen-
tations, particularly in foundational domains such as distance perception, remains 
unexplored. In this study, we introduce a novel adaptation of the empathy for pain 
task to investigate empathy’s influence on distance perception. We also examine 
how two personality traits, trait empathy and alexithymia, modulate this relations-
hip. Utilizing eye-tracking technology, we examine how attention allocation to diffe-
rent facial and bodily features affects empathy’s impact on distance perception. Our 
findings indicate that empathy biases individuals to perceive targets as closer, with 
trait empathy reinforcing this effect and alexithymia attenuating it. Furthermore, we 
demonstrate that heightened attention to eyes and face correlates with perceiving 
targets as closer, while attention to hand shows the opposite trend. These results 
underscore the broader influence of empathy beyond shared emotions, revealing its 
capacity to alter perceptual processes. By elucidating the interplay between perso-
nality traits and visual inputs in shaping these alterations, our study offers valuable 

https://doi.org/10.1038/s41598-024-76731-0
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insights for future research exploring the role of shared representation in empathy 
across various perceptual domains.

Stevens, E.M., Lee, D.N., Stevens, H. et al. The role of mood in shaping reactions 
to smoking cessation messages among adults who smoke: a multimodal in-
vestigation. BMC Public Health 24, 2872 (2024). https://doi.org/10.1186/
s12889-024-20140-5

Abstract
Introduction: Mood-tailored communications may help increase the effective-

ness of smoking cessation messaging interventions. We used both self-report and 
psychophysiological measures to test the impact of mood on responses to cessa-
tion messages in adults who smoke. Methods: In a two-part (crowdsourcing and 
psychophysiological studies) study, the impact of 30 smoking cessation messages 
comprised of five themes (i.e., financial, health, quality-of-life, challenges in quit-
ting, motivation to quit) were tested. In a crowdsourcing study, participants (N = 600) 
were randomly placed into one of three mood induction tasks (i.e., positive, negati-
ve, neutral), and then viewed the smoking cessation messages. After each message, 
they were asked to self-report their motivation to quit, message receptivity, and the 
perceived relevance of the messages. In an in-lab, psychophysiological study, par-
ticipants (N = 42) completed the same tasks as the crowdsourcing participants but 
were monitored for heart rate, skin conductance, and eye-tracking while viewing the 
cessation messages. Using a multi-attribute decision-making model (MADM) using 
outcomes from both studies, messages were ranked for each mood state. Results: The 
top messages for participants in the positive mood condition included the challenges 
in quitting, financial costs/rewards, and motivations to quit themes. The top messa-
ges for participants assigned to the negative mood condition included the challenges 
in quitting, quality-of-life, and financial costs/rewards themes. For participants in 
the neutral mood condition, messages in the challenges in quitting and quality of life 
themes performed best. Conclusions: Variations in the preferences of messages and 
themes by mood condition suggest that mood-tailored communication may increase 
the effectiveness of smoking cessation messages.

Silvestri, F., Odisho, N., y Kumar, A. et al. Examining gaze behavior in undergra-
duate students and educators during the evaluation of tooth preparation: an 
eye-tracking study. BMC Med Educ, 24, 1030 (2024). https://doi.org/10.1186/
s12909-024-06019-4

Abstract
Background: Gaze behavior can serve as an objective tool in undergraduate 

pre-clinical dental education, helping to identify key areas of interest and common 
pitfalls in the routine evaluation of tooth preparations. Therefore, this study aimed to 
investigate the gaze behavior of undergraduate dental students and dental educators 
while evaluating a single crown tooth preparation. Methods: Thirty-five participants 

https://doi.org/10.1186/s12889-024-20140-5
https://doi.org/10.1186/s12889-024-20140-5
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volunteered to participate in the study and were divided into a novice group (den-
tal students, n = 18) and an expert group (dental educators, n = 17). Each participant 
wore a binocular eye-tracking device, and the total duration of fixation was evalua-
ted as a metric to study the gaze behavior. Sixty photographs of twenty different too-
th preparations in three different views (buccal, lingual, and occlusal) were prepared 
and displayed during the experimental session. The participants were asked to rate 
the tooth preparations on a 100 mm visual analog rating scale and were also asked 
to determine whether each tooth preparation was ready to make an impression. Each 
view was divided into different areas of interest. Statistical analysis was performed 
with a three-way analysis of the variance model with repeated measures. Results: 
Based on the participants’ mean rates, the “best” and the “worst” tooth preparations 
were selected for analysis. The results showed a significantly longer time to decision 
in the novices compared to the experts (P = 0.003) and a significantly longer time 
to decision for both the groups in the best tooth preparation compared to the worst 
tooth preparation (P = 0.002). Statistical analysis also showed a significantly longer 
total duration of fixations in the margin compared to all other conditions for both 
the buccal (P < 0.012) and lingual (P < 0.001) views. Conclusions: The current study 
showed distinct differences in gaze behavior between the novices and the experts 
during the evaluation of single crown tooth preparation. Understanding differences 
in gaze behavior between undergraduate dental students and dental educators could 
help improve tooth preparation skills and provide constructive customized feedback.

Kim, M., Lee, J., Lee, S.Y. et al. (2024). Development of an eye-tracking system ba-
sed on a deep learning model to assess executive function in patients with men-
tal illnesses. Sci Rep, 14, 18186. https://doi.org/10.1038/s41598-024-68586-2

Abstract
Patients with mental illnesses, particularly psychosis and obsessive‒compulsi-

ve disorder (OCD), frequently exhibit deficits in executive function and visuospatial 
memory. Traditional assessments, such as the Rey‒Osterrieth Complex Figure Test 
(RCFT), performed in clinical settings require time and effort. This study aimed to 
develop a deep learning model using the RCFT and based on eye tracking to detect 
impaired executive function during visuospatial memory encoding in patients with 
mental illnesses. In 96 patients with first-episode psychosis, 49 with clinical high 
risk for psychosis, 104 with OCD, and 159 healthy controls, eye movements were 
recorded during a 3-min RCFT figure memorization task, and organization and im-
mediate recall scores were obtained. These scores, along with the fixation points 
indicating eye-focused locations in the figure, were used to train a Long Short-Term 
Memory + Attention model for detecting impaired executive function and visuospa-
tial memory. The model distinguished between normal and impaired executive func-
tion, with an F1 score of 83.5%, and identified visuospatial memory deficits, with 
an F1 score of 80.7%, regardless of psychiatric diagnosis. These findings suggest 
that this eye tracking-based deep learning model can directly and rapidly identify 

https://doi.org/10.1038/s41598-024-68586-2
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impaired executive function during visuospatial memory encoding, with potential 
applications in various psychiatric and neurological disorders.

Öztürk, D., Aydoğan, S., Kök, İ. et al. (2024). Linguistic summarization of vi-
sual attention and developmental functioning of young children with au-
tism spectrum disorder. Health Inf Sci Syst, 12, 39. https://doi.org/10.1007/
s13755-024-00297-4

Abstract
Diagnosing autism spectrum disorder (ASD) in children poses significant cha-

llenges due to its complex nature and impact on social communication development. 
While numerous data analytics techniques have been proposed for ASD evaluation, 
the process remains time-consuming and lacks clarity. Eye tracking (ET) data has 
emerged as a valuable resource for ASD risk assessment, yet existing literature pre-
dominantly focuses on predictive methods rather than descriptive techniques that 
offer human-friendly insights. Interpretation of ET data and Bayley scales, a widely 
used assessment tool, is challenging for ASD assessment of children. It should be 
understood clearly to perform better analytic tasks on ASD screening. Therefore, this 
study addresses this gap by employing linguistic summarization techniques to gene-
rate easily understandable summaries from raw ET data and Bayley scales. By in-
tegrating ET data and Bayley scores, the study aims to improve the identification of 
children with ASD from typically developing children (TD). Notably, this research 
represents one of the pioneering efforts to linguistically summarize ET data along-
side Bayley scales, presenting comparative results between children with ASD and 
TD. Through linguistic summarization, this study facilitates the creation of simple, 
natural language statements, offering a first and unique approach to enhance ASD 
screening and contribute to our understanding of neurodevelopmental disorders.

Wang, J., Zhang, J., Xu, P. et al. (2024). Is game-based therapy effective for treating 
cognitive deficits in adults with schizophrenia? Evidence from a randomized 
controlled trial. Transl Psychiatry, 14, 291 (2024). https://doi.org/10.1038/
s41398-024-02920-0

Abstract
Cognitive deficits in schizophrenia are a major contributor to poor functional 

outcomes and everyday functioning, making them a promising therapeutic target. 
Recent years have witnessed a dramatic increase in the use of digital interventions, 
such as game-based therapy, targeting various domains of cognition to treat mental 
disorders. Game-based digital interventions have been suggested to have therapeutic 
value in health care for people with schizophrenia. To support this idea, a novel, on-
line training program (Komori Life) that targets cognitive deficits in schizophrenia 
was tested for feasibility of use and initial efficiency. Inpatients with schizophrenia 
were randomized to complete 20 sessions of either Komori Life (N = 40 comple-
ters) or treatment as usual (N = 40 completers). Cognitive and clinical assessments 

https://doi.org/10.1007/s13755-024-00297-4
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were performed at enrollment and after completion of the training intervention for 
all patients. In addition, 32 healthy volunteers were recruited as controls, and an 
eye-tracking paradigm was employed to assess attentional biases to emotional in-
formation before and after game intervention for all subjects. The results showed 
that there were no group differences in cognitive or clinical assessments at baseline 
between the two patient groups. After game training, there were still no group × time 
interactions on cognitive or clinical assessment scores. Regarding eye movement 
measurements, both patient groups showed increased attention to threatening stimuli 
compared to healthy controls in terms of attentional maintenance at baseline. After 
game training, the game training group revealed greater improvement in attentional 
bias towards threatening scenes (decreased percentage of total duration and percen-
tage of total fixations towards threatening stimuli) relative to the treatment as usual 
group. Moreover, our results partially indicated that training effectiveness was asso-
ciated with cognitive improvement and that heightened attentional maintenance to 
threats was associated with worse cognitive performance. This study provides initial 
evidence that a remote, online cognitive training program is feasible and effective in 
improving cognitive function in schizophrenia. This form of training may serve as 
a complementary therapy to existing psychiatric care. Clinical trial registration: the 
trial is registered at http://www.chictr.org.cn, identifier ChiCTR2100048403.

Rollins, L., Khuu, A. y Bennett, K. (2024). Event-related potentials during encoding 
coincide with subsequent forced-choice mnemonic discrimination. Sci Rep, 
14, 15859 https://doi.org/10.1038/s41598-024-66640-7

Abstract
Computational models and eye-tracking research suggest that encoding varia-

bility accounts for the reduced recognition of targets (A) when paired with non-co-
rresponding lures (B′) relative to corresponding lures (A′). The current study exami-
ned whether neural activity during learning coincided with subsequent performance 
on the forced-choice Mnemonic Similarity Task (MST). Event-related potential 
responses were collected during encoding while young adults completed A–B′ and 
A–A′ trials of the forced-choice MST. Consistent with previous research, perfor-
mance was lower on A–B′ trials than A–A′ trials. The subsequent memory effect 
was not significant for the A–A′ test format. However, for A–B′ trials, we observed a 
significant Accuracy × Stimulus interaction 1000–1200 ms poststimulus onset across 
frontal and fronto-central electrodes. As hypothesized, subsequently correct A–B′ 
trials were associated with a larger amplitude response at encoding to the target (A) 
than the original version of the non-corresponding lure (B). However, subsequently 
incorrect trials were associated with a larger amplitude response to the non-corres-
ponding lure (B) than the target stimulus (A). These findings provide additional su-
pport for the effect of encoding variability on mnemonic discrimination.
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Lee, Y.T., Chang, YH., Tsai, H.J. et al. (2024). Altered pupil light and darkness reflex 
and eye-blink responses in late-life depression. BMC Geriatr, 24, 545 https://
doi.org/10.1186/s12877-024-05034-w

Abstract
Background: Late-life depression (LLD) is a prevalent neuropsychiatric disor-

der in the older population. While LLD exhibits high mortality rates, depressive 
symptoms in older adults are often masked by physical health conditions. In younger 
adults, depression is associated with deficits in pupil light reflex and eye blink rate, 
suggesting the potential use of these responses as biomarkers for LLD. Methods: We 
conducted a study using video-based eye-tracking to investigate pupil and blink res-
ponses in LLD patients (n = 25), older (OLD) healthy controls (n = 29), and younger 
(YOUNG) healthy controls (n = 25). The aim was to determine whether there were 
alterations in pupil and blink responses in LLD compared to both OLD and YOUNG 
groups. Results: LLD patients displayed significantly higher blink rates and dam-
pened pupil constriction responses compared to OLD and YOUNG controls. While 
tonic pupil size in YOUNG differed from that of OLD, LLD patients did not exhibit 
a significant difference compared to OLD and YOUNG controls. GDS-15 scores in 
older adults correlated with light and darkness reflex response variability and blink 
rates. PHQ-15 scores showed a correlation with blink rates, while MoCA scores 
correlated with tonic pupil sizes. Conclusions: The findings demonstrate that LLD 
patients display altered pupil and blink behavior compared to OLD and YOUNG 
controls. These altered responses correlated differently with the severity of depressi-
ve, somatic, and cognitive symptoms, indicating their potential as objective biomar-
kers for LLD.

Frenkel, J., Cajar, A., Engbert, R. et al. (2024). Exploring the impact of nonverbal 
social behavior on learning outcomes in instructional video design. Sci Rep, 
14, 12867. https://doi.org/10.1038/s41598-024-63487-w

Abstract
Online education has become increasingly popular in recent years, and video 

lectures have emerged as a common instructional format. While the importance 
of instructors’ nonverbal social cues such as gaze, facial expression, and gestures 
for learning progress in face-to-face teaching is well-established, their impact on 
instructional videos is not fully understood. Most studies on nonverbal social cues 
in instructional videos focus on isolated cues rather than considering multimodal 
nonverbal behavior patterns and their effects on the learning progress. This study 
examines the role of instructors’ nonverbal immediacy (a construct capturing mul-
timodal nonverbal behaviors that reduce psychological distance) in video lectures 
with respect to learners’ cognitive, affective, and motivational outcomes. We carried 
out an eye-tracking experiment with 87 participants (Mage = 24.11, SD = 4.80). 
Results of multilevel path analyses indicate that high nonverbal immediacy substan-
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tially increases learners’ state motivation and enjoyment, but does not affect cogni-
tive learning. Analyses of learners’ eye movements show that learners allocate more 
attention to the instructor than to the learning material with increasing levels of non-
verbal immediacy displayed by the instructor. The study highlights the importance of 
considering the role of multimodal nonverbal behavior patterns in online education 
and provides insights for effective video lecture design.

Imbert, L., Neige, C., Moirand, R. et al. (2024). Eye-tracking evidence of a rela-
tionship between attentional bias for emotional faces and depression severity 
in patients with treatment-resistant depression. Sci Rep, 14, 12000 https://doi.
org/10.1038/s41598-024-62251-4

Abstract
In a retrospective study, 54 patients with treatment-resistant major depressi-

ve disorder (TRD) completed a free-viewing task in which they had to freely ex-
plore pairs of faces (an emotional face (happy or sad) opposite to a neutral face). 
Attentional bias to emotional faces was calculated for early and sustained attention. 
We observed a significant negative correlation between depression severity as mea-
sured by the 10-item Montgomery-Åsberg Depression Rating Scale (MADRS) and 
sustained attention to happy faces. In addition, we observed a positive correlation 
between depression severity and sustained attention to sad faces. No significant co-
rrelation between depression severity and early attention was found for either happy 
or sad faces. Although conclusions from the current study are limited by the lack of 
comparison with a control group, the eye-tracking free-viewing task appears to be a 
relevant, accessible and easy-to-use tool for measuring depression severity through 
emotional attentional biases in TRD.

Chvátal, R., Slezáková, J., y Popelka, S. (2024). Analysis of problem-solving strate-
gies for the development of geometric imagination using eye-tracking. Educ 
Inf Technol, 29, 12969–12987. https://doi.org/10.1007/s10639-023-12395-z

Abstract
In the realm of mathematics education, geometry problems assume a pivotal 

role by fostering abstract thinking, establishing a connection between theory and 
practice, and offering a tangible portrayal of reality. This study focuses on compre-
hending problem-solving methodologies by observing the eye movements of 45 pri-
mary and multi-year grammar school pupils, aged 11 to 14, as they tackled pictorial 
geometry problems without computation. The utilization of eye-tracking technology, 
specifically the OGAMA tool, was essential in unveiling the nuanced strategies em-
ployed by students. Visual attention metrics were determined through fixations on 
predefined areas of interest, identified using the ScanGraph tool. Through an analy-
sis of eye movements, participants were categorized into three distinct groups based 
on their problem-solving strategies. This categorization facilitated an exploration of 
the correlation between the chosen strategy and the success rate in solving geome-

https://doi.org/10.1038/s41598-024-62251-4
https://doi.org/10.1038/s41598-024-62251-4
https://doi.org/10.1007/s10639-023-12395-z


tema 3: utilización de los sistemas inteligentes tipo eye tracking aplicados en ...	 109

try problems without computational aids. The findings underscore the imperative 
for continued investigation into strategies for solving geometry problems without 
computation. Additionally, the research aims to broaden its scope by delving into the 
metacognitive strategies applied in solving imaginative geometric tasks.

Liang, Z., Ga, R., Bai, H., Zhao, Q., Wang, G., Lai, Q., Chen, S., Yu, Q., y Zhou, Z. 
(2024). Teaching expectancy improves video-based learning: Evidence from 
eye-movement synchronization. British Journal of Educational Technology, 
00, 1–19. https://doi.org/10.1111/bjet.13496

Abstract
Video-based learning (VBL) is popular, yet students tend to learn video mate-

rial passively. Instilling teaching expectancy is a strategy to promote active proces-
sing by learners, but it is unclear how effective it will be in improving VBL. This 
study examined the role of teaching expectancy on VBL by comparing the learning 
outcomes and metacognitive monitoring of 94 learners with different expectancies 
(teaching, test or no expectancy). Results showed that the teaching expectancy group 
had better learning outcomes and no significant difference in the metacognitive mo-
nitoring of three groups. We further explored the visual behaviour patterns of lear-
ners with different expectancies by using the indicator of eye-movement synchroni-
zation. It was found that synchronization was significantly lower in both the teaching 
and test expectancy groups than in the no expectancy group, and the test expectancy 
group was significantly lower than the teaching expectancy group. This result sug-
gests that both teaching and test expectancy enhance the active processing of VBL. 
However, by sliding window analysis, we found that the teaching expectancy group 
used a flexible and planned attention allocation. Our findings confirmed the effec-
tiveness of teaching expectancy in VBL. Also, this study provided evidence for the 
applicability of eye-tracking techniques to assess VBL.

Otros estudios
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3.2.	 Preguntas de autoevaluación Tema 3.
Respuesta (se marca en negrita la respuesta verdadera)

1.	 Las métricas que registra la tecnología eye tracking pueden ser

a. Oscilantes.
b. Estáticas.
c. Dinámicas.
d. Tanto b como c.

2.	 Las métricas dinámicas en eye tracking son:

a. Gaze Point.
b. Sacadas.
c. Fijaciones.
d. Glance.
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3.	 Las métricas estáticas en eye tracking son:

a. Fijaciones.
b. Sacadas.
c. Tanto a como b.
d. Scan Path.

4.	 La Respuesta Psicogalvánica de la piel (GSR) puede medir

a. Activación.
b. Valencia.
c. Impacto.
d. Tanto a como c.

5.	 Las medidas biométricas aplicadas al análisis de las conductas de resolución de 
tareas en humanos pueden medir:

a. Comportamientos conscientes y voluntarios.
b. Comportamientos inconscientes e involuntarios.
c. Comportamientos conscientes e involuntarios.
d. Comportamientos inconscientes y voluntarios.

3.3.	 Práctica Tema 3.

Dado un registro de eye tracking multicanal integrado, realizar una interpre-
tación de la medición de cada métrica y de sus posibles implicaciones psicológicas 
estableciendo hipótesis o preguntas de investigación.
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En este tema se va a abordar qué son las técnicas de Machine Learning o apren-
dizaje automático y su aplicación a la psicología en la intervención, la terapia y la 
investigación.

4.1.	 Datos tabulares en Machine Learning

Antes de comenzar con las técnicas de Machine Learning y con el objetivo de 
facilitar la comprensión de los conceptos que se explican en este tema, se van a in-
troducir algunos conceptos clave sobre los datos, y cómo referirse a ellos.

•	 Todas las tareas de Machine Learning que se deseen plantear necesitan de datos 
para llevarse a cabo. Estos datos pueden provenir de cualquier campo del cono-
cimiento, pero siempre deben representarse de forma que los algoritmos sean 
capaces de trabajar con ellos. Los tipos de datos más comunes son los siguien-
tes: Datos estructurados: tablas con filas y columnas (como bases de datos).

•	 Datos no estructurados: textos, imágenes, audios, vídeos, etc.
•	 Datos semiestructurados: XML, JSON, logs, etc.

Actualmente existen multitud de algoritmos capaces de trabajar directamente 
con datos no estructurados o semiestructurados. Sin embargo, comprender cómo 
representar datos en tablas es el primer paso fundamental para introducirse en el 
campo del Machine Learning.

Los datos tabulares presentan la siguiente estructura básica:
•	 Cada fila de la tabla corresponde con una unidad de dato que representa un caso 

individual dentro del conjunto de datos. Cada fila también se puede denominar 
instancia, ejemplo, registro u observación. Todos estos términos son sinónimos 
y pueden usarse indistintamente. En términos matemáticos, cada fila suele defi-
nirse como un vector  de atributos.

•	 Cada columna de la tabla corresponde con una propiedad, campo o caracterís-
tica de las instancias. Las columnas también se pueden denominar atributos, 
características, variables o features. En ocasiones contaremos con una columna 
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especial que denominaremos etiqueta, la cual se explicará más adelante al ha-
blar de Aprendizaje Supervisado.
Como ejemplo, podemos imaginar una tabla donde cada fila corresponda con 

un participante de un estudio, y cada columna corresponda con una característica del 
mismo (edad, género, horas de sueño, nivel de estrés, etc.).

ATRIBUTOS
Edad Género Horas de sueño … Nivel de Estrés

IN
ST

A
N

C
IA

S

21 F 6 … Alto
23 F 7.5 … Bajo
20 M 5.5 … Muy alto
33 M 8.5 … Medio
29 M 9 … Alto
31 F 8 … Muy alto
… … … … …
24 M 7.5 … Medio

En general, podemos distinguir entre los siguientes tipos de atributos según el 
tipo de dato con el que se representan:

•	 Datos categóricos o nominales: representan categorías que identifican grupos 
diferentes. Por ejemplo, la columna Género puede tomar como valor dos cate-
gorías diferentes: F ó M.

•	 Datos numéricos o cuantitativos: representan cantidades medibles y se pueden 
hacer operaciones matemáticas con ellos. Por ejemplo, la columna Edad se 
representa mediante valores numéricos discretos (sin decimales), y la columna 
Horas de sueño se representa mediante valores numéricos continuos (puede 
tener decimales).

•	 Datos ordinales: representan categorías con un orden lógico y semántico, es de-
cir, las diferencias entre categorías no son necesariamente iguales. Por ejemplo, 
la columna Nivel de Estrés puede tomar como valor cinco categorías diferentes: 
Muy bajo, Bajo, Medio, Alto y Muy alto. Este ejemplo se diferencia de un dato 
categórico o nominal en que la diferencia entre los valores Muy bajo y Bajo; es 
distinta que la diferencia entre los valores Muy bajo y Alto, ya que estos últi-
mos están más lejos dentro de su ordenación lógica.

4.2.	 Machine Learning (ML) en el entorno de la psicología.

En este apartado se describirán pormenorizadamente los procesos de extracción 
y de análisis de los datos. Partiendo del supuesto de que se ha planificado un esce-
nario de interacción, seguidamente se va a señalar cómo se pueden extraer, depurar 
y procesar los datos registrados en distintos entornos de registro de la información 
como pueden ser dispositivos (eye tracking multicanal integrados, plataformas, etc.). 
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Previamente a la extracción de los datos, el profesional tendrá que intentar dar res-
puesta a distintas preguntas de investigación (García, Luengo, y Herrera, 2015) y 
que están relacionadas con los siguientes aspectos (ver Figura 63):

•	 Especificación del problema: se realiza teniendo en cuenta estudios anteriores 
que revelan el estado del arte en cada disciplina.

•	 Comprensión del problema: esta fase incluye la comprensión de la selección de 
datos dirigidos hacia el enfoque de conocimiento concreto con el fin de alcan-
zar un alto grado de fiabilidad.

•	 Preprocesamiento de los datos: este estadio contempla operaciones de depura-
ción de las bases de datos. Esta depuración se realiza eliminando ruido o datos 
inconsistentes para el objeto de la investigación, integrando datos que vienen 
de varias fuentes y transformando datos. La transformación en muchos casos 
significará una reducción y en otros una adaptación a las técnicas de Machine 
Learning que se van a aplicar teniendo en cuenta los softwares donde se van a 
introducir las bases de datos para su posterior procesamiento.

•	 Aplicación de técnicas de Machine Learning: son técnicas de análisis de datos 
que pueden ser supervisadas o no supervisadas. En dichas técnicas se emplean 
distintos algoritmos para distintos fines u objetivos. Además, se evalúa el ren-
dimiento de los distintos algoritmos de minería de datos para obtener un valor 
cuantificable de la calidad del modelo predictivo construido. El objetivo final 
es la extracción de patrones de comportamiento de los datos que servirán para 
comprobar las hipótesis de investigación.

•	 Aplicación de técnicas de evaluación: estas estiman e interpretan los patrones 
hallados.

•	 Explotación de los resultados: implica hacer uso del conocimiento alcanzado en 
un campo de aplicación específico directamente o simplemente reportar los des-
cubrimientos haciendo uso de herramientas de visualización e interpretación.
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Explotación de los resultados: implica hacer uso del conocimiento alcanzado en un 
campo de aplicación específico directamente o simplemente reportar los 
descubrimientos haciendo uso de herramientas de visualización e interpretación.  
 

 

Figura 62. Imagen adaptada del original de García, Luengo, y Herrera (2015) p. 3 sobre 
Knowledge Discovery in Databases (KDD). 

A todo este proceso en su totalidad nos referiremos como minería de datos (Data Mining). 
Algunos autores también se refieren a él como Knowledge Discovery in Databases 
(KDD).  

En este proceso es especialmente importante la fase de preparación de los datos o de 
preprocesamiento, siguiendo a García, Luengo, y Herrera (2015, p.10-13) se pueden 
distinguir las siguientes fases (ver Figura 63): 

• Fase de depuración de los datos (data cleaning). Las bases de datos requieren un 
análisis de los valores y una detección, en su caso, de los valores que faltan, así 
como un análisis de toda aquella información que no es relevante para el propósito 
de la investigación. 

• Fase de Transformación de los datos (data transformation). Los datos tienen que 
prepararse para poder aplicar sobre ellos distintos algoritmos de Minería de Datos. 
Para ello, el investigador tiene que saber cuál es el objetivo de su investigación y, 
en función de ello, qué datos necesita. Además, de conocer las limitaciones de los 
distintos algoritmos en cuanto al tipo de datos con el que puede trabajar. 

• Fase de integración de los datos (data integration). Implica la fusión de datos 
desde múltiples bases. Este proceso debe realizarse con mucha precisión, con el 
fin de evitar redundancias e inconsistencias en el resultado final. Las operaciones 
más usuales son: identificación y unificación de variables y detección de 
conflictos entre los valores que proceden de distintas fuentes.  

Figura 63. Imagen adaptada del original de García, Luengo, y Herrera (2015) p. 3 sobre 
Knowledge Discovery in Databases (KDD).
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A todo este proceso en su totalidad nos referiremos como minería de datos 
(Data Mining). Algunos autores también se refieren a él como Knowledge Discovery 
in Databases (KDD).

En este proceso es especialmente importante la fase de preparación de los datos 
o de preprocesamiento, siguiendo a García, Luengo, y Herrera (2015, p.10-13) se 
pueden distinguir las siguientes fases (ver Figura 64):

•	 Fase de depuración de los datos (data cleaning). Las bases de datos requieren 
un análisis de los valores y una detección, en su caso, de los valores que faltan, 
así como un análisis de toda aquella información que no es relevante para el 
propósito de la investigación.

•	 Fase de Transformación de los datos (data transformation). Los datos tienen 
que prepararse para poder aplicar sobre ellos distintos algoritmos de Minería 
de Datos. Para ello, el investigador tiene que saber cuál es el objetivo de su 
investigación y, en función de ello, qué datos necesita. Además, de conocer las 
limitaciones de los distintos algoritmos en cuanto al tipo de datos con el que 
puede trabajar.

•	 Fase de integración de los datos (data integration). Implica la fusión de datos 
desde múltiples bases. Este proceso debe realizarse con mucha precisión, con 
el fin de evitar redundancias e inconsistencias en el resultado final. Las opera-
ciones más usuales son: identificación y unificación de variables y detección de 
conflictos entre los valores que proceden de distintas fuentes.

•	 Fase de normalización de los datos (data normalization). La unidad de medida 
utilizada puede afectar al análisis de datos. Por ello, todos los atributos1 deben 
ser expresados en las mismas unidades de medida para poder realizar compa-
raciones entre ellos. La normalización de los datos intenta dar a todos los atri-
butos el mismo peso. Por ejemplo, si tenemos un atributo numérico Horas de 
sueño con valores entre 0 y 10, y otro atributo numérico Edad con valores entre 
0 y 100, al hacer operaciones con ellos la magnitud afectará a la importancia 
que se da a cada uno de ellos. Para evitar esto, es habitual normalizar todas las 
columnas de atributos para que se representen mediante valores entre 0 y 1.

•	 Fase de análisis de los valores perdidos (missing data). Los valores perdidos 
hacen referencia a datos para los que no se tiene un valor almacenado. Los da-
tos pueden perderse debido a muchas causas: una entrada incompleta, fallos del 
equipo, pérdida de archivos, etc. Muchos algoritmos de Machine Learning no 
son capaces de trabajar con valores en blanco, en cuyo caso se pueden plantear 
dos opciones:

1	 Un atributo se entiende como la categorización que hacen las Técnicas de Machine Learning desde la fijación de 
valores y la predefinición de las características o de los atributos (Witten y Eibe, 2005).

https://www.amazon.es/Ian-H.-Witten/e/B000AP76WK/ref=dp_byline_cont_book_1
https://www.amazon.es/Eibe-Frank/e/B001K8PUJ2/ref=dp_byline_cont_book_2
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•	 Eliminar todas las filas con datos perdidos. Es posible que haciendo esto 
eliminemos demasiados datos y no tengamos suficientes instancias para en-
trenar un modelo de Machine Learning adecuado.

•	 Realizar estimaciones mediante distintas técnicas. A estas técnicas también 
se las conoce como técnicas de interpolación o imputación de datos per-
didos. A continuación, se listan las técnicas más simples, aunque existen 
muchas otras.
	- Media/moda: sustituye los valores perdidos con la media de la columna 
completa (si el atributo es numérico) o la moda (si el atributo es categórico).

	- Media de puntos cercanos: sustituye los valores perdidos por la mediana 
de los valores pertenecientes a las instancias más cercanas (más similares).

	- Interpolación lineal: sustituye los valores perdidos utilizando una 
interpolación lineal.

•	 Fase de identificación del ruido (noise identification). Este paso se entiende 
como un paso de limpieza de datos. Podemos considerar el ruido como valores 
almacenados dentro de los datos originales que no tienen sentido. De nuevo, 
este ruido puede deberse a muchas causas: una medida imprecisa, una entrada 
incorrecta, fallos en el preprocesamiento, etc. Proporcionar este tipo de datos 
directamente a los algoritmos de Machine Learning puede provocar que el co-
nocimiento logrado o los patrones encontrados en los datos sean imprecisos, ya 
que han aprendido a partir de información incorrecta. Por esta razón es necesa-
rio detectar las entradas ruidosas para filtrarlas o corregirlas.
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Figura 63.  Imagen adaptada del original de García, Luengo, y Herrera (2015) preparación de 
los datos p. 12. 

• Fase de reducción de datos. Esta incluye un conjunto de técnicas que permite la 
representación reducida de los datos originales. Aunque este es en muchos casos 
un paso opcional, es extremadamente útil en multitud de situaciones:  

o Muchos algoritmos de Machine Learning presentan tiempos de ejecución 
que escalan con el tamaño de los datos. Si este tamaño es excesivamente 
grande, la ejecución de dichos algoritmos puede ser prohibitiva.  

o En ocasiones varios atributos de nuestros datos presentan información 
altamente correlacionada o información duplicada. Por ejemplo, podemos 
tener una columna Edad y otra Año de nacimiento. Este caso es muy 
evidente ya que sabemos que ambas representan la misma información, y 
por lo tanto debemos quedarnos con una. Sin embargo, en ocasiones la 
correlación entre dos o más columnas no es tan evidente, y debemos usar 
técnicas específicas para detectarla y filtrarlas.  

o Es posible que tengamos atributos que no sean informativos para la tarea 
que queremos resolver. Un ejemplo común son las columnas de 
identificador único, como por ejemplo el DNI del participante o cualquier 
otro tipo de identificación numérico. Estas columnas no nos proporcionan 
información real sobre el participante, por lo que no serán útiles a la hora 
de extraer conocimiento. Al contrario, pueden introducir ruido en el 
proceso de aprendizaje, por lo que siempre deben ser eliminadas.  

o También podemos tener columnas cuyos valores presenten una varianza 
baja, o incluso que sean constantes. Dado que estos valores no nos 
proporcionan información discriminativa entre instancias, la decisión 
habitual será eliminarlas.  
 

Figura 64. Imagen adaptada del original de García, Luengo, y Herrera (2015)  
preparación de los datos p. 12.
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•	 Fase de reducción de datos. Esta incluye un conjunto de técnicas que permite 
la representación reducida de los datos originales. Aunque este es en muchos 
casos un paso opcional, es extremadamente útil en multitud de situaciones:
•	 Muchos algoritmos de Machine Learning presentan tiempos de ejecución 

que escalan con el tamaño de los datos. Si este tamaño es excesivamente 
grande, la ejecución de dichos algoritmos puede ser prohibitiva.

•	 En ocasiones varios atributos de nuestros datos presentan información alta-
mente correlacionada o información duplicada. Por ejemplo, podemos tener 
una columna Edad y otra Año de nacimiento. Este caso es muy evidente ya 
que sabemos que ambas representan la misma información, y por lo tanto 
debemos quedarnos con una. Sin embargo, en ocasiones la correlación entre 
dos o más columnas no es tan evidente, y debemos usar técnicas específicas 
para detectarla y filtrarlas.

•	 Es posible que tengamos atributos que no sean informativos para la tarea 
que queremos resolver. Un ejemplo común son las columnas de identifica-
dor único, como por ejemplo el DNI del participante o cualquier otro tipo de 
identificación numérico. Estas columnas no nos proporcionan información 
real sobre el participante, por lo que no serán útiles a la hora de extraer cono-
cimiento. Al contrario, pueden introducir ruido en el proceso de aprendizaje, 
por lo que siempre deben ser eliminadas.

•	 También podemos tener columnas cuyos valores presenten una varianza 
baja, o incluso que sean constantes. Dado que estos valores no nos propor-
cionan información discriminativa entre instancias, la decisión habitual será 
eliminarlas.

Entre las técnicas de reducción de los datos destacan la selección de caracterís-
ticas y la selección de instancias2, aunque también existen otra como el data squas-
hing3 y la discretización (Liu, Hussain, Tan, y Dash, 2002).

•	 La selección de instancias se puede realizar a través de distintos métodos: 
muestreo, Boosting4, selección de prototipos, aprendizaje basado en instancias, 
aprendizaje activo, etc. Habitualmente su objetivo será reducir el coste de eje-
cución de los algoritmos o la reducción de ruido.

2	 Una instancia es el conjunto de atributos que forman las entidades para las que se dispone de datos de entrada, 
son las instancias las que hay que clasificar, asociar o agrupar (Witten y Eibe, 2005).

3	 Se define como la construcción de una base de datos más pequeña que proporciona aproximadamente los mismos 
resultados que con la base larga (DuMouchel, 2002).

4	 Boosting es un meta-algoritmo de aprendizaje automático que reduce el sesgo y varianza en un contexto de 
aprendizaje supervisado. Boosting está basado en el cuestionamiento planteado por Kearns y Valiant (1989) 
sobre si un conjunto de clasificadores débiles pudiera crear un clasificador robusto. Un clasificador débil está de-
finido para ser un clasificador el cual está solo débilmente correlacionado con la clasificación correcta (el mismo 
clasifica mejor que un clasificador aleatorio). En contraste, un clasificador robusto es un clasificador que tiene un 
mejor desempeño que el de un clasificador débil, ya que sus clasificaciones se aproximan más a las verdaderas 
clases.

https://www.amazon.es/Ian-H.-Witten/e/B000AP76WK/ref=dp_byline_cont_book_1
https://www.amazon.es/Eibe-Frank/e/B001K8PUJ2/ref=dp_byline_cont_book_2
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•	 Por otro lado, la selección de atributos abarca principalmente los métodos de 
filtrado y los métodos envolventes (wrapper). Los métodos de filtrado se cen-
tran en calcular ciertas medidas indicativas del nivel de correlación y/o varian-
za de las columnas. Teniendo en cuenta estas medidas (Correlación de Pearson, 
Chi-cuadrado, ANOVA, varianza, etc) se eliminan las columnas con demasiada 
correlación y/o muy poca varianza. Por otro lado, los métodos envolventes eva-
lúan varias combinaciones de atributos para encontrar la que funciona mejor. 
Suelen ser más precisos, pero más costosos, ya que el número de posibles com-
binaciones de atributos escala exponencialmente.
Un posible esquema de distribución de las distintas Técnicas de aprendizaje es el 

que diferencia entre técnicas de Machine Learning de aprendizaje supervisado (supervi-
sed learning) y de aprendizaje no supervisado (unsupervised learning) (ver Figura 66).

•	 El aprendizaje supervisado puede aplicarse cuando los datos están etiquetados, 
es decir, cuando presentan un atributo especial conocido como objetivo, clase, 
etiqueta o target. Siguiendo a García, Luengo, y Herrera (2015), el objetivo de 
las técnicas de aprendizaje supervisado es el descubrimiento de las relaciones 
entre los atributos de entrada (también llamados variables) y la etiqueta. En 
términos matemáticos, cada instancia de entrada suele representarse como un 
vector  de atributos de entrada (variables independientes), y su etiqueta suele 
representare con la variable y (variable dependiente). El proceso de aprendizaje 
supervisado consta habitualmente de dos fases:
1.	 Entrenamiento del modelo predictivo: el algoritmo aprende estas relaciones 

a partir de los datos etiquetados, es decir, a partir de las instancias con una 
etiqueta conocida. El producto final de esta fase es un modelo predictivo 
entrenado listo para usar.

2.	 Predicción: el modelo predictivo ya entrenado se usa para predecir la etique-
ta de futuras instancias no etiquetadas que no han sido utilizadas durante el 
proceso de entrenamiento.

Dependiendo del tipo de dato asociado a la etiqueta de los datos, se puede ha-
blar de varios tipos de predicción:

•	 Clasificación (si es de tipo categórico, con valores finitos). En este caso la eti-
queta se conoce usualmente como clase. Por ejemplo: dados unos atributos de 
un paciente queremos predecir si éste padece una enfermedad o no. Por lo tanto, 
tenemos un atributo clase con dos posibles valores categóricos: «enfermedad 
sí» y «enfermedad no».

•	 Regresión (si es de tipo numérico, con valores infinitos). En este caso la eti-
queta se conoce usualmente como valor objetivo, valor de regresión o valor de 
salida. Por ejemplo: dada una serie de variables del paciente como las horas de 
sueño, el nivel de estrés percibido, el consumo de cafeína, el nivel de apoyo 
social… se quiere predecir su puntaje en la escala GAD-7 de ansiedad.
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•	 Clasificación ordinal (si es de tipo categórico, pero las distintas clases tienen un 
orden lógico). En este caso los posibles valores de las clases están ordenados. 
Por ejemplo: dados unos atributos del entorno de un paciente, queremos prede-
cir su grado de autoestima: «muy baja», «baja», «media», «alta», «muy alta». 
Estas clases tienen un orden lógico relevante, es decir, la diferencia entre «muy 
baja» y «baja» es menor que entre «muy baja» y «alta».

•	 El aprendizaje no supervisado suele aplicarse cuando los datos no están etiqueta-
dos. En estos casos no conocemos (o no existe) una variable objetivo o clase que 
queramos predecir. Por lo tanto, y siguiendo a García et al. (2015), en este caso los 
algoritmos no cuentan con supervisión, sino que solo disponen de datos de entrada, 
y por lo tanto no pueden generar un modelo predictivo. El objetivo es encontrar 
regularidades, irregularidades, relaciones, similitudes y asociaciones en los datos 
de entrada. Se puede diferenciar entre distintos tipos de tarea:

•	 Clustering (o agrupamiento). Es el más común y consiste en dividir un con-
junto de datos en grupos o clústers de forma que las instancias dentro de cada 
grupo sean más similares entre sí que con los elementos de otros grupos.

•	 Reglas de asociación. Los algoritmos tratan de encontrar relaciones de asocia-
ción entre datos. Por ejemplo: se busca modelar la probabilidad de que, si un 
cliente presenta una afección X, también presente otra afección Y.

•	 Detección de anomalías (o outliers). Los algoritmos tratan de detectar instancias 
anómalas con características y/o comportamientos que se desvían de los esperados 
o de las características y comportamientos generales del resto de los datos. Puede 
considerarse como un tipo especial de clustering donde se trata de dividir los datos 
entre «instancias típicas» e «instancias anómalas». (ver Figura 65).

Figura 65. Clasificación de las Técnicas de Machine Learning.

4.3.	 Técnicas de Machine Learning.

Seguidamente, se exponen una serie de técnicas de Machine Learning utili-
zadas en trabajos de psicología educativa. Técnicas de aprendizaje supervisado de 
clasificación y de regresión, y de aprendizaje no supervisado de clustering.
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4.3.1.	Técnicas de aprendizaje supervisado.

Seguidamente, se presentan algunas de las técnicas de aprendizaje supervisado 
usadas en distintos artículos de investigación sobre aprendizaje.

4.3.1.1.	 Técnicas del vecino más cercano (Nearest Neighbor k-nn).

Es un método de aprendizaje supervisado que puede usarse tanto para clasifica-
ción como para regresión. Dados unos datos de entrenamiento etiquetados, la predic-
ción de la etiqueta para una instancia nueva se calcula en base a su distancia con las k 
instancias de entrenamiento más cercanas a ella. Para calcular la distancia entre dos 
instancias, consideramos cada una como un vector , 
siendo p el número de atributos de entrada.

La distancia entre dos vectores puede calcularse mediante la distancia euclídea:

Con esta definición de distancia entre instancias podemos calcular cuáles son las k 
instancias de entrenamiento más cercanas a la instancia nueva cuya etiqueta queremos 
predecir. El valor de k debe ser escogido por el usuario. En la Figura 66 se muestra un 
ejemplo de clasificación con dos clases: «azul» y «rojo». La instancia nueva se muestra 
en verde. Observamos que para k = 3 el vecindario contiene dos instancias rojas y una 
azul, por lo que se asignaría la clase «roja» a la nueva instancia. Sin embargo, si consi-
deramos un vecindario de tamaño k = 5, este contiene tres instancias azules y dos rojas, 
por lo cual, se asignaría la clase «azul» a la nueva instancia. (ver Figura 66)
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consideramos un vecindario de tamaño k = 5, este contiene tres instancias azules y dos 
rojas, por lo cual, se asignaría la clase «azul» a la nueva instancia.  

 

Figura 64.  Tomada de Antti Ajanki AnA. 

 

En el caso de la regresión, cada instancia de entrenamiento tendrá asignado un 
valor numérico en lugar de un color o clase. Por lo tanto, la etiqueta de la nueva instancia 
será la media de las etiquetas asociadas a cada instancia en el vecindario (en lugar de la 
moda).  

Este tipo de técnicas se conocen como técnicas de aprendizaje vago o lazy 
learning, ya que su fase de entrenamiento consiste únicamente en almacenar los datos de 
entrenamiento para poder calcular su distancia con la nueva instancia en la fase de 
predicción.  

Como hemos podido observar en el ejemplo, nuestro modelo predictivo se 
comportará de forma diferente dependiendo del valor de k que escojamos. La elección 
del valor de k dependerá del número total de datos de entrenamiento. Los valores altos de 
k reducen el efecto del ruido en la clasificación, ya que consideran más instancias. Sin 
embargo, también pueden perder detalles importantes. Los mejores valores de k (que 
producen modelos predictivos más precisos) se pueden encontrar mediante diversas 
técnicas de optimización. 

Resumen del funcionamiento del algoritmo:  

• Fase de entrenamiento del modelo predictivo: Simplemente se almacenan las 
instancias de entrenamiento (lazy learning).  

• Fase de predicción: Para una nueva instancia con etiqueta desconocida y un 
tamaño de vecindario k definido, se buscan sus los k vecinos más cercanos. La 
etiqueta predicha corresponderá con la moda (clasificación) o la media (regresión) 
de las etiquetas asociadas a las instancias en el vecindario.  

Ejemplo de aplicación en psicología:  

Un ejemplo de procesamiento del vecino más cercano con el paquete estadístico SPSS 
v.24 se puede observar en la Figura 69. Se analiza la variable tipo de Blended Learning 
empleado en tres opciones de entrenamiento (1 = Suplemental Blended (face to face) F2F; 
2 = Replacement Blended 1, 3 = Replacement Blended 2) sobre las variables de predicción 

Figura 66. Tomada de Antti Ajanki AnA.

En el caso de la regresión, cada instancia de entrenamiento tendrá asignado 
un valor numérico en lugar de un color o clase. Por lo tanto, la etiqueta de la nueva 
instancia será la media de las etiquetas asociadas a cada instancia en el vecindario 
(en lugar de la moda).

Este tipo de técnicas se conocen como técnicas de aprendizaje vago o lazy learning, 
ya que su fase de entrenamiento consiste únicamente en almacenar los datos de entrena-
miento para poder calcular su distancia con la nueva instancia en la fase de predicción.
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Como hemos podido observar en el ejemplo, nuestro modelo predictivo se 
comportará de forma diferente dependiendo del valor de k que escojamos. La elec-
ción del valor de k dependerá del número total de datos de entrenamiento. Los valo-
res altos de k reducen el efecto del ruido en la clasificación, ya que consideran más 
instancias. Sin embargo, también pueden perder detalles importantes. Los mejores 
valores de k (que producen modelos predictivos más precisos) se pueden encontrar 
mediante diversas técnicas de optimización.

Resumen del funcionamiento del algoritmo:
•	 Fase de entrenamiento del modelo predictivo: Simplemente se almacenan las 

instancias de entrenamiento (lazy learning).
•	 Fase de predicción: Para una nueva instancia con etiqueta desconocida y un 

tamaño de vecindario k definido, se buscan sus los k vecinos más cercanos. La 
etiqueta predicha corresponderá con la moda (clasificación) o la media (regre-
sión) de las etiquetas asociadas a las instancias en el vecindario.
Ejemplo de aplicación en psicología:
Un ejemplo de procesamiento del vecino más cercano con el paquete estadís-

tico SPSS v.24 se puede observar en la Figura 67. Se analiza la variable tipo de 
Blended Learning empleado en tres opciones de entrenamiento (1 = Suplemental 
Blended (face to face) F2F; 2 = Replacement Blended 1, 3 = Replacement Blended 2) 
sobre las variables de predicción que son en este caso los resultados de aprendizaje 
en distintas pruebas (Defensa del ABP, Elaboración del ABP y Pruebas tipo test) y 
en los resultados finales.
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que son en este caso los resultados de aprendizaje en distintas pruebas (Defensa del ABP, 
Elaboración del ABP y Pruebas tipo test) y en los resultados finales. 

 
Figura 65. Aplicación de la técnica del vecino más cercano con el paquete estadístico SPSS 

(fuente propia). 

El identificador focal permite marcar los casos que tienen un especial interés. Este método 
utiliza especialmente en casos clínicos, los casos focales muestran los vecinos más 
próximos a la variable especificada, estos valores siempre son positivos. 

 4.2.1.2.. Regresión lineal 

Es un modelo matemático que se utiliza para aproximar la relación entre dos o 
más variables, una que se considera la dependiente y otras que se consideran 
independientes o regresores y una variable de error. 

𝑌𝑌𝑌𝑌 = 𝛽𝛽𝛽𝛽0 + 𝛽𝛽𝛽𝛽1𝑋𝑋𝑋𝑋1 + 𝛽𝛽𝛽𝛽2𝑋𝑋𝑋𝑋2 + ⋯+ 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛 + 𝜉𝜉𝜉𝜉 

 

𝑌𝑌𝑌𝑌  sería la variable dependiente, las 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖: 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛 serían las pendientes de la recta sobre 
las variables independientes, n sería el número de ellas, 𝛽𝛽𝛽𝛽0 un desplazamiento y  𝜉𝜉𝜉𝜉 sería 
el error asociado. 

Las rectas de regresión más satisfactorias son las que mejor se ajustan a la nube de puntos 
o diagrama de dispersión que se genera por la distribución binomial. Para dos variables, 
la recta de regresión de y sobre x sería: 

𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦 +
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2

(𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥) 

Figura 67. Aplicación de la técnica del vecino más cercano con el paquete estadístico SPSS 
(fuente propia).
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El identificador focal permite marcar los casos que tienen un especial interés. 
Este método utiliza especialmente en casos clínicos, los casos focales muestran los 
vecinos más próximos a la variable especificada, estos valores siempre son positivos.

4.3.1.2.	 Regresión lineal

Es un modelo matemático que se utiliza para aproximar la relación entre dos o 
más variables, una que se considera la dependiente y otras que se consideran inde-
pendientes o regresores y una variable de error.

 sería la variable dependiente, las  serían las pendientes de la 
recta sobre las variables independientes, n sería el número de ellas,  un desplaza-
miento y  sería el error asociado.

Las rectas de regresión más satisfactorias son las que mejor se ajustan a la nube 
de puntos o diagrama de dispersión que se genera por la distribución binomial. Para 
dos variables, la recta de regresión de y sobre x sería:

Puede hallarse una Regresión Lineal simple (una sola variable dependiente) o 
múltiple (varias variables dependientes).

Resumen del funcionamiento del algoritmo:
•	 Fase de entrenamiento del modelo predictivo: el algoritmo encuentra los valo-

res de los coeficientes  que mejor se adaptan a los datos de entrenamiento. El 
resultado de esta fase es una fórmula lineal lista para usar.

•	 Fase de predicción: para una nueva instancia con etiqueta desconocida, los va-
lores de sus atributos se introducen en la fórmula lineal. El resultado de aplicar 
dicha fórmula es el valor de regresión predicho.
Ejemplo de aplicación en psicología:
Un ejemplo con cuatro variables independientes se puede observar en la Figura 

68 y la regresión sobre cada una de las variables independientes se puede comprobar 
en la Figura 69.
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Puede hallarse una Regresión Lineal simple (una sola variable dependiente) o múltiple 
(varias variables dependientes). 

Resumen del funcionamiento del algoritmo:  

• Fase de entrenamiento del modelo predictivo: el algoritmo encuentra los valores 
de los coeficientes 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 que mejor se adaptan a los datos de entrenamiento. El 
resultado de esta fase es una fórmula lineal lista para usar.  

• Fase de predicción: para una nueva instancia con etiqueta desconocida, los valores 
de sus atributos se introducen en la fórmula lineal. El resultado de aplicar dicha 
fórmula es el valor de regresión predicho.  

Ejemplo de aplicación en psicología:  

Un ejemplo con cuatro variables independientes se puede observar en la Figura 66 y la 
regresión sobre cada una de las variables independientes se puede comprobar en la Figura 
67. 

 
Figura 66. Gráfico de regresión de residuo estandarizado realizado con el paquete estadístico 

SPSS (fuente propia). 

 

Figura 68. Gráfico de regresión de residuo estandarizado realizado con el paquete 
estadístico SPSS (fuente propia).
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Figura 67. Gráficos de regresión parcial realizado con el paquete estadístico SPSS (fuente 
propia). 

Asimismo, hay que tener en cuenta otros dos índices: la Tolerancia, o probabilidad de 
entrada, indica si los valores de una variable independiente son redundantes respecto de 
las otras variables dependientes. Si el valor de alguna de ellas es próximo a 0, habrá que 
eliminarla ya que dicha variable será una combinación lineal de las otras; y el Valor de 
Inflación de la Varianza (VIF), cuantifica la multicolinealidad en un análisis de regresión 
normal de mínimos cuadrados, indica hasta qué punto el cuadrado de la desviación 
estándar estimada se incrementa por razones de colinealidad los valores entre 1-10 se 
consideran adecuados. Un ejemplo de análisis de Regresión Lineal múltiple realizado con 
el paquete estadístico SPSS v.24 se presenta en la Figura 68. 

 
Figura 68. Modelo de Regresión lineal Múltiple realizado con el paquete estadístico SPSS 

(fuente propia). 

Modelo 

Coeficientes no 
estandarizados 

Coeficientes 
estandarizados 

t p 

Correlaciones 
Estadísticas de 

colinealidad 

B 
Error 

estándar Beta Orden cero Parcial Parte Tolerancia VIF 

1 (Constante) -.611 .799  -.765 .446      

SMEAN(ElaboracinABP) .524 .420 .113 1.246 .214 .148 .095 .077 .455 2.199 

SMEAN(DefensaABP) -1.538 .437 -.335 -3.514 .001 -.125 -.260 -.216 .415 2.407 

SMEAN(Examen) .850 .202 .438 4.204 .000 .550 .306 .258 .347 2.881 

SMEAN(TotalRA) .226 .201 .169 1.126 .262 .329 .086 .069 .168 5.970 

a. Variable dependiente: GrupoSTI 
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Asimismo, hay que tener en cuenta otros dos índices: la Tolerancia, o probabilidad de 
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estándar estimada se incrementa por razones de colinealidad los valores entre 1-10 se 
consideran adecuados. Un ejemplo de análisis de Regresión Lineal múltiple realizado con 
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Coeficientes no 
estandarizados 
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Error 
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1 (Constante) -.611 .799  -.765 .446      
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SMEAN(DefensaABP) -1.538 .437 -.335 -3.514 .001 -.125 -.260 -.216 .415 2.407 
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Figura 69. Gráficos de regresión parcial realizado con el paquete estadístico SPSS  
(fuente propia).
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Asimismo, hay que tener en cuenta otros dos índices: la Tolerancia, o probabi-
lidad de entrada, indica si los valores de una variable independiente son redundantes 
respecto de las otras variables dependientes. Si el valor de alguna de ellas es próximo 
a 0, habrá que eliminarla ya que dicha variable será una combinación lineal de las 
otras; y el Valor de Inflación de la Varianza (VIF), cuantifica la multicolinealidad 
en un análisis de regresión normal de mínimos cuadrados, indica hasta qué punto 
el cuadrado de la desviación estándar estimada se incrementa por razones de coli-
nealidad los valores entre 1-10 se consideran adecuados. Un ejemplo de análisis de 
Regresión Lineal múltiple realizado con el paquete estadístico SPSS v.24 se presenta 
en la Figura 70.
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propia). 
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estándar estimada se incrementa por razones de colinealidad los valores entre 1-10 se 
consideran adecuados. Un ejemplo de análisis de Regresión Lineal múltiple realizado con 
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Figura 70. Modelo de Regresión lineal Múltiple realizado con el paquete estadístico SPSS 
(fuente propia).

Nota. Coeficientes no estandarizados = son los coeficientes de regresión parcial 
que definen la ecuación de regresión en puntuaciones directas. Coeficiente estandari-
zado = β ayudan a determinar cuál de las variables independientes tiene mayor efecto 
sobre la variable dependiente y definen la ecuación de regresión en puntuaciones 
típicas. Colinealidad es la propiedad según la cual un conjunto de puntos está situado 
sobre la misma línea recta.

4.3.1.3.	 Árboles de decisión (Decision Tree).

Un árbol de decisión es un algoritmo en el que se utilizan preguntas organizadas 
de forma jerárquica, para guiar el proceso de asignación de clase o calcular el valor 
de salida. El proceso comienza en el nodo raíz, donde se pide utilizar el valor de uno 
de los atributos de la instancia a clasificar (o el valor de salida que desea determinar). 
Dependiendo del resultado de esta comparación, el proceso se dirigirá a una de entre 
varias ramas (normalmente, solo a dos), donde se hallará un nodo con una nueva 
prueba, y nuevas ramas a seguir en función del resultado. El proceso continúa hasta 
que se alcanza un nodo hoja (un nodo sin más ramas), donde se asigna una clase a la 
instancia o existe una fórmula para calcular el valor de salida de esa instancia.

El algoritmo de entrenamiento del modelo consistirá en encontrar aquella es-
tructura de nodos (preguntas) que mejor separe las instancias de entrenamiento en 
sus clases o etiquetas (hojas del árbol). El proceso de construcción de un árbol de de-
cisión también comienza en el nodo raíz. En cada nodo se dividirá el conjunto de en-
trenamiento, por lo que es necesario determinar cuál es el mejor atributo de división. 
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Si el atributo es categórico, se añadirán tantas ramas como posibles valores pueda 
tomar Si por el contrario el atributo es numérico, será necesario encontrar un valor 
umbral que proporcione una división óptima (si se utiliza sólo un valor umbral, la di-
visión será de dos subconjuntos, es decir, dos ramas). El criterio para la selección de 
atributos y valores es la optimización de una función (Breiman et al., 2017; Quinlan, 
2014) que mida de alguna forma la calidad de las divisiones. Una vez seleccionados 
el atributo y el valor del umbral, se utilizan para determinar a través de qué ramas 
pasa cada instancia de entrenamiento, y en los nodos de llegada correspondientes 
se repite el proceso iterativamente (escogiendo un nuevo atributo y construyendo 
nuevas ramas). Dicho proceso concluye cuando el número de instancias de entrena-
miento en el nodo generado es menor que un valor determinado, o cuando se cumple 
cualquier otro criterio de parada. A los nodos hoja se les asigna la clase mayoritaria 
de las instancias que han llegado a ese nodo (o se utilizan para calcular una función 
que dará el valor de salida cuando el árbol se utiliza en problemas de regresión).

Los árboles de decisión son muy populares en la minería de datos y en el 
aprendizaje automático por varias razones: son rápidos de construir, interpretables e 
inestables (es decir, pequeños cambios en el conjunto de entrenamiento darán como 
resultado árboles muy diferentes). Esta última propiedad ha hecho que se utilicen 
profusamente para la construcción de «multi-clasificadores» (Maudes et al., 2012; 
Díez-Pastor et al., 2014) y de regresores (Pardo et al., 2013; Arnaiz-González et al., 
2016b).

Resumen del funcionamiento del algoritmo:
•	 Fase de entrenamiento del modelo predictivo: se encuentran los atributos y va-

lores umbral óptimos que conforman la estructura de árbol que mejor divide los 
datos de entrenamiento.

•	 Fase de predicción: para una nueva instancia con etiqueta desconocida, se ha-
cen las preguntas empezando desde el nodo, que continuarán hasta llegar a una 
hoja. El valor predicho corresponderá con la etiqueta asociada a dicha hoja.
Ejemplo de aplicación con SPSS:
Un ejemplo de aplicación de árboles de decisión realizado con SPSS se puede 

consultar en la Figura 71 y en la Figura 72.
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• Fase de predicción: para una nueva instancia con etiqueta desconocida, se hacen 
las preguntas empezando desde el nodo, que continuarán hasta llegar a una hoja. 
El valor predicho corresponderá con la etiqueta asociada a dicha hoja. 

Ejemplo de aplicación con SPSS:  

Un ejemplo de aplicación de árboles de decisión realizado con SPSS se puede 
consultar en la Figura 69 y en la Figura 70. 

 
Figura 69. Árbol de decisión realizado con el paquete estadístico SPSS (fuente propia). 

 

 

Figura 70. Resultados del Árbol de decisión realizado con el paquete estadístico SPSS (fuente 
propia). 

4.2.3. Técnicas de aprendizaje no supervisado 

Las técnicas de agrupamiento o clustering se utilizan cuando no hay información 
de clase que predecir, pero se busca dividir los datos en grupos naturales o clústeres. 
Dichos grupos reflejan subgrupos de ejemplos que comparten algunas propiedades o 
tienen algunas similitudes. Trabajan calculando una medida de distancia multivariada 
entre observaciones que están más estrechamente relacionadas (ver definición 
aprendizaje no supervisado). Seguidamente, se va a analizar la técnica de k-means. 

4.2.3.1. Utilización de la técnica de clustering de k-means 

Sea un conjunto X y una medida de distancia d: X × X → ℝ. La salida del algoritmo 
k-means es un conjunto de centros 𝐶𝐶𝐶𝐶 = �𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘,� que están definiendo implícitamente 
un conjunto de clústeres en el que cada punto pertenece al clúster representado por el 

Nodo 

1 2 3 Total 
Categoría 

pronosticada 
Nodo 
padre 

 

N Porcentaje N Porcentaje N Porcentaje N Porcentaje Variable pa 
Chi-

cuadrado 
gl Valores de 

división 

0 58 33.0% 63 35.8% 55 31.3% 176 100.0% 2       

1 42 60.0% 24 34.3% 4 5.7% 70 39.8% 1 0 SMEAN(Examen) .000 67.629 4 <= 2,400 

2 13 24.1% 25 46.3% 16 29.6% 54 30.7% 2 0 SMEAN(Examen) .000 67.629 4 (2,400, 2,720] 

3 3 5.8% 14 26.9% 35 67.3% 52 29.5% 3 0 SMEAN(Examen) .000 67.629 4 > 2,720 
 

Figura 71. Árbol de decisión realizado con el paquete estadístico SPSS (fuente propia).
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• Fase de predicción: para una nueva instancia con etiqueta desconocida, se hacen 
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El valor predicho corresponderá con la etiqueta asociada a dicha hoja. 
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Un ejemplo de aplicación de árboles de decisión realizado con SPSS se puede 
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Nodo 

1 2 3 Total 
Categoría 

pronosticada 
Nodo 
padre 

 

N Porcentaje N Porcentaje N Porcentaje N Porcentaje Variable pa 
Chi-

cuadrado 
gl Valores de 

división 

0 58 33.0% 63 35.8% 55 31.3% 176 100.0% 2       

1 42 60.0% 24 34.3% 4 5.7% 70 39.8% 1 0 SMEAN(Examen) .000 67.629 4 <= 2,400 

2 13 24.1% 25 46.3% 16 29.6% 54 30.7% 2 0 SMEAN(Examen) .000 67.629 4 (2,400, 2,720] 

3 3 5.8% 14 26.9% 35 67.3% 52 29.5% 3 0 SMEAN(Examen) .000 67.629 4 > 2,720 
 

Figura 72. Resultados del Árbol de decisión realizado con el paquete estadístico SPSS 
(fuente propia).
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o clústeres. Dichos grupos reflejan subgrupos de ejemplos que comparten algunas 
propiedades o tienen algunas similitudes. Trabajan calculando una medida de distan-
cia multivariada entre observaciones que están más estrechamente relacionadas (ver 
definición aprendizaje no supervisado). Seguidamente, se va a analizar la técnica de 
k-means.

4.3.2.1.	 Utilización de la técnica de clustering de k-means

Sea un conjunto X y una medida de distancia d: X × X → ℝ. La salida del algo-
ritmo k-means es un conjunto de centros  que están definiendo 
implícitamente un conjunto de clústeres en el que cada punto pertenece al clúster 
representado por el centro más cercano, C(x) = argminCd(x, c) y del objetivo es 
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Lo que implica que cada punto se asignará al centro más cercano para lo que se 
minimizará el cuadrado de las distancias de los puntos al centro asignado.
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El proceso de entrenamiento es el siguiente (Fox y Guestrin, 2018):
•	 El usuario decide un valor de k, que corresponde con el número de grupos o 

clústeres que se quieran encontrar en los datos.
•	 El algoritmo escoge aleatoriamente k instancias que pasarán a considerarse 

como los centros de los clústeres.
•	 Para todo el resto de instancias, se buscará su centro más cercano, asociándola 

a su clúster correspondiente.
•	 De entre todas las instancias que hayan sido asociadas a un mismo clúster, se 

calcula su centroide (como la media de los puntos), el cual pasará a ser el nuevo 
centro del clúster.

•	 El proceso se repite hasta que al calcular los nuevos centroides, estos no se 
modifican, lo que significa que el algoritmo ha convergido.
Asimismo, el método k-means++ que tiene una calidad de optimización lo-

cal. La inicialización inteligente o Smart implica la elección de un primer centro de 
clúster de forma uniforme desde la aleatorización de los puntos de los datos. Esto 
hace que los centros iniciales sean más representativos que aquellos que puedan 
seleccionarse aleatoriamente. Esto ayuda a acelerar el proceso de entrenamiento y a 
encontrar clústeres de mejor calidad.

Una vez descrita la versión más simple del algoritmo, a continuación, se ex-
ponen una serie de variantes más sofisticadas del mismo que tratan de dar solución 
a distintas dificultades computacionales y técnicas. El problema es computacional-
mente difícil (NP-hard). Sin embargo, hay eficientes heurísticas que se emplean co-
múnmente y convergen rápidamente a un óptimo local. Estos suelen ser similares a 
los algoritmos expectation-maximization de mezclas de distribuciones gaussianas 
por medio de un enfoque de refinamiento iterativo empleado por ambos algoritmos. 
Además, los dos algoritmos usan los centros que los grupos utilizan para modelar 
los datos. Sin embargo, k-means tiende a encontrar grupos de extensión espacial 
comparable, mientras que el mecanismo expectation-maximization permite que los 
grupos tengan formas diferentes.

Dado un conjunto de observaciones o valores (x1, x2,…., x3) cada una de ellas es 
un vector real de d dimensiones, k-means realiza una partición de las observaciones 
en k conjuntos (k ≤ n) para minimizar la suma de los cuadrados dentro de cada grupo 
S = {S1, S2, …, Sn} donde µi es la media de puntos en Si.

μ

El algoritmo que se utiliza es una técnica de refinamiento iterativo o algoritmo 
Lloyd. Se parte de un conjunto inicial de k centroides m1

(1), …, mk
(1), el algoritmo se 

alterna en dos pasos.
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Paso de asignación, en el que se asigna cada observación al grupo con la me-
dia más cercana, implica la partición de las observaciones respecto del diagrama de 
Voronoi5, generado por los centroides.

Cada  se sitúa en un centroide  aunque podría situarse en dos pasos:
Paso de actualización, se calculan los nuevos centroides como el centroide de 

las observaciones dentro del grupo. El algoritmo se considera que ha convergido 
cuando las asignaciones no cambian.

En las figuras siguientes se presenta la demostración del algoritmo. (Figuras 73-76)
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Figura 65. Centroides 
iniciales en este caso 
k = 3 se generan de 
forma aleatoria 
dentro de un 
conjunto de datos. 
Tomado de Weston.1 
(2018). 

 

Figura 66. Los k grupos 
son generados 
asociando el punto con 
la media más cercana. 
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Figura 67. El centroide 
de cada uno de los k 
grupos se recalcula 
Weston.3  (2018). 

 

 

 

Figura 68. Los pasos 2 y 
3 se repiten hasta que 
se logra la 
convergencia. Weston.4  
(2018). 

 

El número de grupos k es un parámetro de entrada y es necesario una elección adecuada 
del número de los grupos en un conjunto de datos. El ejemplo de Weston indica la 

 

5 Es un método de interpolación basado en la distancia euclidiana que es especialmente adecuada cuando 
los datos son cualitativos. Se unen los puntos entre las distancias trazando las mediatrices de los segmentos 
de unión, las intersecciones de las mediatrices determinan unos polígonos en un espacio bidimensional 
alrededor de un conjunto de puntos de control, el perímetro de los polígonos generados es equidistante a 
los puntos vecinos en un área de influencia. 
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Figura 73. 
Centroides iniciales 
en este caso k = 3 
se generan de forma 
aleatoria dentro 
de un conjunto de 
datos. Tomado de 
Weston.1 (2018).

Figura 74. Los 
k grupos son 
generados 
asociando el punto 
con la media más 
cercana. Se realiza a 
través del diagrama 
de Voronoi generado 
por los centroides 
Weston.2 (2018).

Figura 75.  
El centroide de 
cada uno de los k 
grupos se recalcula 
Weston.3 (2018).

Figura 76.  
Los pasos 2 y 3 
se repiten hasta 
que se logra la 
convergencia. 
Weston.4 (2018).

El número de grupos k es un parámetro de entrada y es necesario una elección 
adecuada del número de los grupos en un conjunto de datos. El ejemplo de Weston 
indica la estructura de k grupos, las cruces son los centroides y el algoritmo converge 
en cinco interacciones (ver Figura 77).
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estructura de k grupos, las cruces son los centroides y el algoritmo converge en cinco 
interacciones (ver Figura 84). 

 
Figura 71. Ejemplo de convergencia del algoritmo k-means tomado de Agor (2018). 

Una limitación de k-means es el modelo de agrupamiento, ya que esta técnica tiende a 
formar grupos de tamaños parecidos. En cambio un algoritmo de expectación-
maximización (EM) alterna pasos de esperanza de la verosimilitud (E) mediante la 
inclusión de variables latentes y un paso de maximización (M), donde se computan 
estimadores de máxima verosimilitud mediante la maximización de la verosimilitud 
esperada en el paso E, Los parámetros que se encuentran en el paso M se emplean para 
comenzar el paso E siguiente y así sucesivamente. En la Figura 85 se puede comprobar 
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Seguidamente, se realiza Maximum Likelihood sobre los parámetros que presentan 
responsabilidades. 
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Figura 77. Ejemplo de convergencia del algoritmo k-means tomado de Agor (2018).

5	 Es un método de interpolación basado en la distancia euclidiana que es especialmente adecuada cuando los datos son 
cualitativos. Se unen los puntos entre las distancias trazando las mediatrices de los segmentos de unión, las intersec-
ciones de las mediatrices determinan unos polígonos en un espacio bidimensional alrededor de un conjunto de puntos 
de control, el perímetro de los polígonos generados es equidistante a los puntos vecinos en un área de influencia.
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Una limitación de k-means es el modelo de agrupamiento, ya que esta técnica 
tiende a formar grupos de tamaños parecidos. En cambio un algoritmo de expec-
tación-maximización (EM) alterna pasos de esperanza de la verosimilitud (E) me-
diante la inclusión de variables latentes y un paso de maximización (M), donde se 
computan estimadores de máxima verosimilitud mediante la maximización de la 
verosimilitud esperada en el paso E, Los parámetros que se encuentran en el paso M 
se emplean para comenzar el paso E siguiente y así sucesivamente. En la Figura 78 
se puede comprobar las comparaciones de agrupamiento entre un modelo de cluste-
ring k-mean y uno EM.
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estructura de k grupos, las cruces son los centroides y el algoritmo converge en cinco 
interacciones (ver Figura 84). 
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Figura 78. Comparación de agrupamiento entre un modelo de clustering k-mean y uno EM, 
tomado de Chire (2018).

El algoritmo de EM, es un algoritmo iterativo, en un primer paso estima los 
clústeres posibles respecto de los parámetros presentes estimados.

π μ ϵ

π μ ϵ

Seguidamente, se realiza Maximum Likelihood sobre los parámetros que pre-
sentan responsabilidades.

π μ

4.4.	 Técncias de evaluación de modelos de Machine Learning.

Hasta ahora, se ha descrito cómo distintos algoritmos pueden generar mo-
delos predictivos (ya sean de clasificación o de regresión) así como modelos 
de clustering capaces de dividir conjuntos de datos no etiquetados en clústeres 
informativos.

A continuación, se va a abordar cómo evaluar la calidad de los modelos pre-
dictivos generados, la cual hace referencia a la calidad de sus predicciones, y que 
dependerá del algoritmo utilizado, de la calidad y cantidad de datos de entrena-
miento y de los parámetros escogidos.
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Para saber si un modelo predictivo está realizando predicciones correctas, es 
necesario comparar dicha predicción con el valor real de la etiqueta. Sin embargo, 
normalmente no conocemos la etiqueta de las instancias nuevas, y esa es la razón 
por la que acudimos a los modelos predictivos. Sí conocemos la etiqueta de las 
instancias que hemos usado para el entrenamiento del modelo. Sin embargo, usar 
dichas instancias para evaluar el modelo nos llevará a evaluaciones demasiado 
optimistas, ya que el objetivo es comprobar la calidad predictiva del modelo sobre 
datos que no haya visto antes.

Existen varias estrategias que nos permiten abordar esta problemática. La 
más sencilla es la división de los datos originales en datos de entrenamiento y 
datos de test (o validación). Al entrenar un modelo, usamos la mayoría de las 
instancias en el conjunto de datos original (por ejemplo, el 80%), mientras que 
reservamos una pequeña cantidad de instancias (por ejemplo, el 20%) para eva-
luación. Una vez entrenado el modelo, se utilizará para predecir la etiqueta de las 
instancias reservadas. Esta predicción se compara con el valor real de su etiqueta. 
Si la mayoría de las predicciones coincide con la etiqueta real, se considera que la 
capacidad predictiva del modelo es buena. Esto se puede cuantificar mediante una 
serie de métricas de evaluación.

Para problemas de clasificación, la métrica más simple es la exactitud (o ac-
curacy). Esta se calcula como el ratio entre el número de predicciones correctas 
y el número total de predicciones. Si la mayoría de predicciones es correcta este 
ratio tendrá valores cercanos al 1, y en caso contrario tendrá valores cercanos al 0. 
Aunque es fácil de calcular y comprender, el accuracy en ocasiones proporciona 
evaluaciones demasiado optimistas (por ejemplo, cuando el conjunto de clases 
está desbalanceado). Por esa razón, existen muchas otras métricas más avanzadas 
que se pueden considerar en función de las características del problema concreto: 
precisión, recall, F1 score, área bajo la curva ROC, etc.

Para problemas de regresión, no sería correcto comprobar simplemente si 
la predicción corresponde con la etiqueta real, sino más bien si la predicción se 
acerca. Por ejemplo, si la etiqueta real de una instancia es 7.8 y un modelo predice 
un valor de 8.0, esta predicción será mejor que la de un modelo que predice un 
valor de 123,5. Esto se puede medir mediante una serie de métricas como el error 
absoluto medio (MAE), el error cuadrático medio (MSE), el coeficiente de deter-
minación (R²), etc.

En cuanto al uso de particiones de entrenamiento y test, aunque esta técnica 
es sencilla y fácil de comprender, también presenta una serie de limitaciones. En 
primer lugar, las instancias que entran en una partición u otra se escogen de for-
ma aleatoria. Sin embargo, el modelo predictivo variará dependiendo de cuales 
de ellas se han usado para el entrenamiento. Si por casualidad, en el conjunto de 
entrenamiento hubieran caído las instancias «más informativas», las métricas de-
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volverían valores de calidad más altos que hubieran caído las instancias «menos 
informativas». Podemos solucionar este sesgo de varias formas:

•	 Repitiendo el proceso de entrenamiento y test con varias particiones aleato-
rias diferentes, y calculando un valor de la métrica de calidad para cada una 
de ellas. Al promediar todos los valores de la métrica calculados, obtendre-
mos una estimación de la calidad del modelo, menos sesgada y, por lo tanto, 
más fiable.

•	 Usando técnicas de validación cruzada. Esta técnica consiste en dividir el 
conjunto de datos original en k subconjuntos del mismo tamaño (por ejemplo, 
k=10). Uno de los subconjuntos se reserva como conjunto de test mientras 
que el resto se unen para conformar el conjunto de entrenamiento. Esto se 
repite k veces, cada una de ellas considerando un subconjunto diferente como 
conjunto de test. Al finalizar, se promedian todos los valores de la métrica 
calculados. Esta técnica garantiza que todas las instancias se han usado como 
instancias de entrenamiento y de test al menos una vez, reduciendo el sesgo y 
proporcionando una estimación de la calidad del modelo más fiable.

4.5.	 Minería de Datos en educación

Entre los diversos campos de aplicación de la minería de datos, encontramos 
el Educational Data Mining (EDM). Esta es una disciplina emergente que se cen-
tra en desarrollar métodos para analizar datos provenientes de entornos de educa-
ción, normalmente de plataformas de aprendizaje (por ejemplo, Moodle), con el 
objetivo de entender el proceso de aprendizaje de los alumnos, modelar y predecir 
la tasa de éxito, etc.

Como ejemplo de aplicación, se han usado técnicas de clustering a partir de 
logs para detectar, categorizar y analizar perfiles de alumnos y su relación con su 
desempeño en la asignatura (Cerezo, et al, 2016). (ver Figura 79)

Otros marcos de trabajo más amplios como el Process Mining también han 
sido aplicados a contextos de educación. A diferencia del Educational Data Mining, 
que se centra principalmente en el resultado y la relación de las distintas variables 
sobre el mismo, el Educational Process Mining permite realizar un análisis en el 
que el proceso tienen un papel central. Esta disciplina tiene como objetivo extraer 
conocimiento de logs de eventos provenientes de plataformas de aprendizaje, e in-
corpora técnicas de Machine Learning e inteligencia de negocio para proporcionar 
un conjunto de procesos de trabajo más eficientes y mejor comprendidos.
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Figura 71. Esquema de análisis de datos con un procedimiento tradicional y con uno de Process 
Mining. Tomado de Bogarín, Romero, y Cerezo (2016) p. 77. Reproducido con permiso de los 

autores. 

Previamente al análisis de los datos, se deberá de realizar una depuración de la base 
de datos con el fin de eliminar aquellos datos que no son relevantes para el estudio (ver 
la información recogida en este punto). Seguidamente, se podrá aplicar un algoritmo de 
ProM y también técnicas de ajuste como Goodness-of-fit indices o Índice de ajuste. Estas 
técnicas indican la diferencia entre el comportamiento observado en el registro y el 
comportamiento descrito por el modelo de proceso, una secuencia de actividades que 
pertenecen a un mismo caso se denomina traza, las trazas pueden estar asociadas a rutas 
de ejecución especificadas por el modelo de minería de procesos. También, podría utilizar 
EMD de aprendizaje supervisado de clasificación y de regresión. Para ello se pueden 
emplear distintas herramientas (Bogarín, Romero, y Cerezo, 2017a, 2017b): 

• SPSS en sus paquetes de clustering. 

• WEKA aplicando la técnica de clustering. 

• ProM (Van Der Aalst, 2011) Heuristics Miner, analiza la probabilidad desde el 
cálculo de frecuencias o relaciones entre las tareas y los constructos de 
dependencia/frecuencia en tablas y en gráficos. 

• Medidas de la teoría de grafos (número total de nodos y número total de enlaces) 
para analizar el nivel de complejidad de los modelos obtenidos. 

o Intention Mining (IM) es un análisis de procesos que se focaliza en el 
análisis del razonamiento a través del análisis de las actividades. 

Figura 79. Esquema de análisis de datos con un procedimiento tradicional y con uno de 
Process Mining. Tomado de Bogarín, Romero, y Cerezo (2016) p. 77. Reproducido con 

permiso de los autores.

Previamente al análisis de los datos, se deberá de realizar una depuración de 
la base de datos con el fin de eliminar aquellos datos que no son relevantes para el 
estudio (ver la información recogida en este punto). Seguidamente, se podrá aplicar 
un algoritmo de ProM y también técnicas de ajuste como Goodness-of-fit indices o 
Índice de ajuste. Estas técnicas indican la diferencia entre el comportamiento obser-
vado en el registro y el comportamiento descrito por el modelo de proceso, una se-
cuencia de actividades que pertenecen a un mismo caso se denomina traza, las trazas 
pueden estar asociadas a rutas de ejecución especificadas por el modelo de minería 
de procesos. También, podría utilizar EMD de aprendizaje supervisado de clasifi-
cación y de regresión. Para ello se pueden emplear distintas herramientas (Bogarín, 
Romero, y Cerezo, 2017a, 2017b):

•	 SPSS en sus paquetes de clustering.
•	 WEKA aplicando la técnica de clustering.
•	 ProM (Van Der Aalst, 2011) Heuristics Miner, analiza la probabilidad desde el 

cálculo de frecuencias o relaciones entre las tareas y los constructos de depen-
dencia/frecuencia en tablas y en gráficos.

•	 Medidas de la teoría de grafos (número total de nodos y número total de enla-
ces) para analizar el nivel de complejidad de los modelos obtenidos.
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•	 Intention Mining (IM) es un análisis de procesos que se focaliza en el análi-
sis del razonamiento a través del análisis de las actividades.

•	 Alpha Miner (AM) descubre cuál será el mejor algoritmo, si bien las limita-
ciones de esta técnica es que no usa frecuencias y por ello sólo es adecuado 
cuando analiza eventos con ruido, es muy poco frecuente en el aprendizaje 
de datos.

•	 Sequence Pattern Mining (SPM) es una técnica común en DM y descubre 
las subsecuencias comunes, encuentra relaciones entre acontecimientos su-
cesivos. Puede analizar episode mining (EP) se basan en los t-pattern analy-
sis de los modelos de Markov. SPM se utiliza para analizar las conductas de 
aprendizaje de los estudiantes.

•	 Graph Mining (GM) también denominada sub-graph mining hay que dife-
renciar esta técnica de la de network analysis (SNA) esta última puede ser 
considerada una parte de GM.

•	 Genetic algorithm proporciona modelos de proceso construido sobre ma-
trices causales (entrada y salida) y dependencias para cada actividad. Este 
enfoque aborda problemas tales como ruido, datos incompletos, constructos 
de libre elección, actividades ocultas, concurrencia y actividades duplica-
das. Los algoritmos genéticos son un método de optimización que maximiza 
o minimiza una función f(x1, x2, x3, ...) ->.

•	 Fuzzy miner es un proceso de descubrimiento de algoritmos se utiliza para 
abordar problemas con un número grande de números y actividades que no 
están muy estructuradas.

•	 Social Network Analysis Technique (SNA) es una técnica sociométrica que 
analiza las redes de interacción social, consiste en nodos que representan la 
organización en entidades y arcos.

•	 Visualización de procesos permite desarrollar una interfaz de visualización 
del análisis de datos.

Esta forma de análisis permite el seguimiento de cada uno de los grupos detec-
tados y por ende la puesta en marcha de orientaciones personalizadas para cada uno 
de ellos. Asimismo, la combinación de las técnicas de EDM y de ProM va a servir al 
docente para estudiar el proceso de comportamiento de todos los estudiantes desde 
el inicio del desarrollo de la docencia, con el objetivo último de poder adaptarla a las 
necesidades de cada grupo.

4.6.	 Utilización de la Minería de datos con el software Orange.

4.6.1.	Introducción a la Minería de datos.

La inteligencia Artificial se puede entender como la creación de sistemas in-
formáticos con un comportamiento inteligente. La Minería de datos se relacionaría 
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con la creación de sistemas que aprenden por sí mismos o que extraen conocimiento 
de los datos. El Deep Learning se puede definir como el uso de redes neuronales 
profundas que trabajan con grandes conjuntos de datos. Un gráfico que resume estos 
conceptos se puede consultar en la Figura 80.
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Figura 72. Inteligencia Artificial, Minería de Datos y Deep Learning. 

Actualmente, la Minería de datos se utiliza en muchos ámbitos (Salud, Educación, 
Márquetin, Banca, Medioambiente). Minería de datos y Machine Learning no son 
conceptos exactamente iguales. La diferencia estriba en la participación humana en el 
proceso, hay una mayor participación en el proceso de Minería de Datos y menos en las 
Técnicas de Machine Learning donde la máquina tiene un mayor protagonismo y 
autonomía. 

Los datos incluyen atributos (características, también denominadas variables en 
estadística). Estos pueden ser nominales o categóricos, numéricos o binarios (0 y 1). Estos 
registran también instancias o participantes. Un ejemplo, se puede consultar en la Figura 
95. 

 
Figura 73. Ejemplo de clases, instancias y atributos. 

Figura 80. Inteligencia Artificial, Minería de Datos y Deep Learning.

Actualmente, la Minería de datos se utiliza en muchos ámbitos (Salud, 
Educación, Márquetin, Banca, Medioambiente). Minería de datos y Machine 
Learning no son conceptos exactamente iguales. La diferencia estriba en la partici-
pación humana en el proceso, hay una mayor participación en el proceso de Minería 
de Datos y menos en las Técnicas de Machine Learning donde la máquina tiene un 
mayor protagonismo y autonomía.

Los datos incluyen atributos (características, también denominadas variables 
en estadística). Estos pueden ser nominales o categóricos, numéricos o binarios (0 y 
1). Estos registran también instancias o participantes. Un ejemplo, se puede consul-
tar en la Figura 81.
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estadística). Estos pueden ser nominales o categóricos, numéricos o binarios (0 y 1). Estos 
registran también instancias o participantes. Un ejemplo, se puede consultar en la Figura 
95. 

 
Figura 73. Ejemplo de clases, instancias y atributos. 

Figura 81. Ejemplo de clases, instancias y atributos.
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4.6.2.	Utilización del software Orange

Seguidamente, se señalan los pasos para descargar el software Orange:
Paso 1. Descargar el fichero comprimido datos.zip.
Paso 2. Descomprimir el fichero en una carpeta local (ejemplo: Escritorio).
Paso 3. Descargar la versión portable de Orange para Windows.
Paso 4. Descomprimir su contenido y ejecutar la aplicación Orange.
Paso 5. Seguir las instrucciones de la presentación.
Una vez descargado y ejecutado la interfaz de Orange será la que se puede 

comprobar en la Figura 82.
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4.5.2. Utilización del software Orange 

Seguidamente, se señalan los pasos para descargar el software Orange: 

Paso 1. Descargar el fichero comprimido datos.zip. 

Paso 2. Descomprimir el fichero en una carpeta local (ejemplo: Escritorio). 

Paso 3. Descargar la versión portable de Orange para Windows. 

Paso 4. Descomprimir su contenido y ejecutar la aplicación Orange. 

Paso 5. Seguir las instrucciones de la presentación. 

Una vez descargado y ejecutado la interfaz de Orange será la que se puede comprobar en 
la Figura 96. 

 

Figura 74. Software de Data Mining Orange. 

En el menú de la izquierda se pueden consultar los widgets que ofrece Orange (ver Figura 
75. 

Figura 82. Software de Data Mining Orange.

En el menú de la izquierda se pueden consultar los widgets que ofrece Orange 
(ver Figura 83).
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Figura 75. Widgets que ofrece Orange. 

Para iniciar el trabajo con Orange hay que seguir los pasos de: 

Paso 1. Cargar visualizar y guardar el conjunto de datos. 

Paso 2. Modificar o Transformar el conjunto de datos. 

Paso 3. Visualizar el conjunto de datos y los resultados. 

Paso 4. Aplicar modelos de clasificación y/o de regresión. 

Paso 5. Aplicar opciones para evaluar los modelos. 

Paso 6. Aplicar modelos de aprendizaje no supervisado. 

Un resumen de estos pasos con los iconos de Orange se puede consultar en la Figura 76. 

 

Figura 83. Widgets que ofrece Orange.

https://github.com/aliciaolivaresgil/BIEIntroduccionMineriadeDatos/blob/main/datos.zip
https://download.biolab.si/download/files/Orange3-3.36.2.zip
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Para iniciar el trabajo con Orange hay que seguir los pasos de:
Paso 1. Cargar visualizar y guardar el conjunto de datos.
Paso 2. Modificar o Transformar el conjunto de datos.
Paso 3. Visualizar el conjunto de datos y los resultados.
Paso 4. Aplicar modelos de clasificación y/o de regresión.
Paso 5. Aplicar opciones para evaluar los modelos.
Paso 6. Aplicar modelos de aprendizaje no supervisado.
Un resumen de estos pasos con los iconos de Orange se puede consultar en la 

Figura 84.
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Figura 76. Carga de datos en Orange. 

Para importar las bases de datos hay que tener en cuenta que antes se debe comprobar si 
están en un formato Comma separated values (.csv), para ello si se tiene la base de datos 
en un formato Excel español primero se debe cambiar a formato .csv y después se debe 
sustituir el carácter ; que separa las variables por comas. 

Paso 1 base de datos en formato Excel (ver Figura 77). 

 

Figura 77. Base de datos en formato Excel. 

Paso 2 pasar los datos a formato .csv (ver Figura 78). 

Figura 84. Carga de datos en Orange.

Para importar las bases de datos hay que tener en cuenta que antes se debe com-
probar si están en un formato Comma separated values (.csv), para ello si se tiene la 
base de datos en un formato Excel español primero se debe cambiar a formato .csv y 
después se debe sustituir el carácter ; que separa las variables por comas.

Paso 1 base de datos en formato Excel (ver Figura 85).
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Para importar las bases de datos hay que tener en cuenta que antes se debe comprobar si 
están en un formato Comma separated values (.csv), para ello si se tiene la base de datos 
en un formato Excel español primero se debe cambiar a formato .csv y después se debe 
sustituir el carácter ; que separa las variables por comas. 

Paso 1 base de datos en formato Excel (ver Figura 77). 

 

Figura 77. Base de datos en formato Excel. 

Paso 2 pasar los datos a formato .csv (ver Figura 78). 

Figura 85. Base de datos en formato Excel.

Paso 2 pasar los datos a formato .csv (ver Figura 86).
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Figura 78. Datos en formato CSV. 

Paso 3. Se tiene que abrir la base en formato .csv en un Notepad (ver Figura 79). 

 

Figura 79. Base de datos en formato CVS. 

Seguidamente se tiene que seleccionar todo y sustituir las comas por puntos (ver Figura 
80). 

Figura 86. Datos en formato CSV.

Paso 3. Se tiene que abrir la base en formato .csv en un Notepad (ver Figura 87).
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Figura 78. Datos en formato CSV. 

Paso 3. Se tiene que abrir la base en formato .csv en un Notepad (ver Figura 79). 

 

Figura 79. Base de datos en formato CVS. 

Seguidamente se tiene que seleccionar todo y sustituir las comas por puntos (ver Figura 
80). 

Figura 87. Base de datos en formato CVS.

Seguidamente se tiene que seleccionar todo y sustituir las comas por puntos 
(ver Figura 88).
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Figura 80. Cambio de puntos a comas. 

Posteriormente, se tiene que volver a seleccionar todo y sustituir los punto y coma por 
comas (ver Figura 81). 

 

Figura 81. Cambio de los separadores de tabulación de comas a punto y coma. 

Figura 88. Cambio de puntos a comas.

Posteriormente, se tiene que volver a seleccionar todo y sustituir los punto y 
coma por comas (ver Figura 89).
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Figura 80. Cambio de puntos a comas. 

Posteriormente, se tiene que volver a seleccionar todo y sustituir los punto y coma por 
comas (ver Figura 81). 

 

Figura 81. Cambio de los separadores de tabulación de comas a punto y coma. Figura 89. Cambio de los separadores de tabulación de comas a punto y coma.

Después hay que guardar los cambios. Ahora ya estaría lista la base de datos 
para importarse en Orange en un data csv file (ver Figura 90).
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Después hay que guardar los cambios. Ahora ya estaría lista la base de datos para 
importarse en Orange en un data csv file (ver Figura 82). 

 

Figura 82. Importación de la base de datos en el software Orange. 

 

Una vez se tenga ya la base de datos importada para visualizar los datos de «File» en 
formato tabular hay que conectar con un widget «File» con «Data Table», después se hará 
un doble click en el icono de «Data Table» para visualizar los datos. Un ejemplo, se puede 
consultar en la Figura 83. 

 

Figura 83. Visualización de los datos en un formato tabular. 

Figura 90. Importación de la base de datos en el software Orange.

Una vez se tenga ya la base de datos importada para visualizar los datos de 
«File» en formato tabular hay que conectar con un widget «File» con «Data Table», 
después se hará un doble click en el icono de «Data Table» para visualizar los datos. 
Un ejemplo, se puede consultar en la Figura 91.
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Después hay que guardar los cambios. Ahora ya estaría lista la base de datos para 
importarse en Orange en un data csv file (ver Figura 82). 

 

Figura 82. Importación de la base de datos en el software Orange. 

 

Una vez se tenga ya la base de datos importada para visualizar los datos de «File» en 
formato tabular hay que conectar con un widget «File» con «Data Table», después se hará 
un doble click en el icono de «Data Table» para visualizar los datos. Un ejemplo, se puede 
consultar en la Figura 83. 

 

Figura 83. Visualización de los datos en un formato tabular. Figura 91. Visualización de los datos en un formato tabular.

Para visualizar la distribución se puede utilizar el icono de «Scatter Plot» y el 
de «Distribution», ver Figura 92.
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Para visualizar la distribución se puede utilizar el icono de «Scatter Plot» y el de 
«Distribution», ver Figura 84. 

 

Figura 84. Visualización del «Scatter Plot» y el de «Distribution» en el software Orange. 

Los tipos de tareas que se pueden realizar con Orange son propios de aprendizaje 
supervisado, aprendizaje no supervisado y Otras (aprendizaje semisupervisado, 
aprendizaje por refuerzo, sumarización y visualización) (ver Figura 85). 

 

Figura 85. Tipos de tareas que se pueden realizar con Orange. 

Respecto de la aplicación de algoritmos de aprendizaje supervisado, esta se realiza cuando 
se conoce la clase (ver Figura  86). 

Figura 92. Visualización del «Scatter Plot» y el de «Distribution» en el software Orange.

Los tipos de tareas que se pueden realizar con Orange son propios de aprendi-
zaje supervisado, aprendizaje no supervisado y Otras (aprendizaje semisupervisado, 
aprendizaje por refuerzo, sumarización y visualización) (ver Figura 93).
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Para visualizar la distribución se puede utilizar el icono de «Scatter Plot» y el de 
«Distribution», ver Figura 84. 

 

Figura 84. Visualización del «Scatter Plot» y el de «Distribution» en el software Orange. 

Los tipos de tareas que se pueden realizar con Orange son propios de aprendizaje 
supervisado, aprendizaje no supervisado y Otras (aprendizaje semisupervisado, 
aprendizaje por refuerzo, sumarización y visualización) (ver Figura 85). 

 

Figura 85. Tipos de tareas que se pueden realizar con Orange. 

Respecto de la aplicación de algoritmos de aprendizaje supervisado, esta se realiza cuando 
se conoce la clase (ver Figura  86). 

Figura 93. Tipos de tareas que se pueden realizar con Orange.

Respecto de la aplicación de algoritmos de aprendizaje supervisado, esta se 
realiza cuando se conoce la clase (ver Figura 94).
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Figura 86. Aplicación de algoritmos de aprendizaje supervisado conociendo la clase. 

4.5.2.1. Utilización aprendizaje supervisado aplicando el algoritmo de Regresión 
con Orange 

Dentro de los algoritmos de aprendizaje supervisado está la Regresión (ver Figura 87). 

 

Figura 87. Aprendizaje supervisado. Regresión. 

Ejemplos de esta aplicación sería por ejemplo la predicción de un salario en función de 
los atributos de formación, edad, experiencia, ciudad y el valor de la predicción sería el 
salario mensual. Aplicado al ámbito de la psicología por ejemplo en el ámbito del 
aprendizaje, sería la predicción de los resultados académicos en función de los atributos 
del uso de las estrategias metacognitivas, del tiempo dedicado al estudio y de los 
conocimientos previos de la materia. Los algoritmos de regresión que se pueden aplicar 
con Orange son diversos, se van a estudiar dos ejemplos del algoritmo del vecino más 

Figura 94. Aplicación de algoritmos de aprendizaje supervisado conociendo la clase.

4.6.2.1.	 Utilización aprendizaje supervisado aplicando el algoritmo de 
Regresión con Orange

Dentro de los algoritmos de aprendizaje supervisado está la Regresión (ver 
Figura 95).
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Figura 86. Aplicación de algoritmos de aprendizaje supervisado conociendo la clase. 

4.5.2.1. Utilización aprendizaje supervisado aplicando el algoritmo de Regresión 
con Orange 

Dentro de los algoritmos de aprendizaje supervisado está la Regresión (ver Figura 87). 

 

Figura 87. Aprendizaje supervisado. Regresión. 

Ejemplos de esta aplicación sería por ejemplo la predicción de un salario en función de 
los atributos de formación, edad, experiencia, ciudad y el valor de la predicción sería el 
salario mensual. Aplicado al ámbito de la psicología por ejemplo en el ámbito del 
aprendizaje, sería la predicción de los resultados académicos en función de los atributos 
del uso de las estrategias metacognitivas, del tiempo dedicado al estudio y de los 
conocimientos previos de la materia. Los algoritmos de regresión que se pueden aplicar 
con Orange son diversos, se van a estudiar dos ejemplos del algoritmo del vecino más 

Figura 95. Aprendizaje supervisado. Regresión.

Ejemplos de esta aplicación sería por ejemplo la predicción de un salario en 
función de los atributos de formación, edad, experiencia, ciudad y el valor de la 
predicción sería el salario mensual. Aplicado al ámbito de la psicología por ejemplo 
en el ámbito del aprendizaje, sería la predicción de los resultados académicos en fun-
ción de los atributos del uso de las estrategias metacognitivas, del tiempo dedicado 
al estudio y de los conocimientos previos de la materia. Los algoritmos de regresión 
que se pueden aplicar con Orange son diversos, se van a estudiar dos ejemplos del 
algoritmo del vecino más cercano (k-NN) y del de regresión lineal. En el primer caso 
se une el widget «File» con el widget «k-NN» (ver Figura 96).
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cercano (k-NN) y del de regresión lineal. En el primer caso se une el widget «File» con 
el widget «k-NN» (ver Figura 88). 

 

Figura 88. Utilización del algoritmo k-NN con Orange. 

Para hallar la regresión Orange se presenta un ejemplo de predicción del índice de grasa 
corporal respecto de personas no observadas. En este caso se une el widget «k-NN» con 
el widget «Predictions», un ejemplo se puede consultar en la Figura 89. 

 

Figura 89. Utilización del algoritmo de regresión con Orange. 

También, se puede aplicar un modelo de Linear Regression, para ello se une al widget 
Predictions el widget Linnear Regression con el fin de hallar si las predicciones son 
iguales o diferentes que las del modelo «k-NN» (ver Figura 90). 

Figura 96. Utilización del algoritmo k-NN con Orange.
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Para hallar la regresión Orange se presenta un ejemplo de predicción del índice 
de grasa corporal respecto de personas no observadas. En este caso se une el widget 
«k-NN» con el widget «Predictions», un ejemplo se puede consultar en la Figura 97.
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Para hallar la regresión Orange se presenta un ejemplo de predicción del índice de grasa 
corporal respecto de personas no observadas. En este caso se une el widget «k-NN» con 
el widget «Predictions», un ejemplo se puede consultar en la Figura 89. 

 

Figura 89. Utilización del algoritmo de regresión con Orange. 

También, se puede aplicar un modelo de Linear Regression, para ello se une al widget 
Predictions el widget Linnear Regression con el fin de hallar si las predicciones son 
iguales o diferentes que las del modelo «k-NN» (ver Figura 90). 

Figura 97. Utilización del algoritmo de regresión con Orange.

También, se puede aplicar un modelo de Linear Regression, para ello se une al 
widget Predictions el widget Linnear Regression con el fin de hallar si las prediccio-
nes son iguales o diferentes que las del modelo «k-NN» (ver Figura 98).
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Figura 90. Modelo de Linear Regression con Orange. 

Para saber cuál de los dos modelos ejecuta una mejor predicción, en este ejemplo habría 
que saber el índice de grasa corporal real de los sujetos y compararla con la predicción 
hallada en cada uno de los modelos. No obstante, si se utiliza para evaluar el conjunto de 
datos del entrenamiento va dar un error muy bajo e interesa que sea capaz de predecir en 
datos no entrenados previamente. Para mitigar este problema se puede dividir el conjunto 
de datos en datos de entrenamiento y datos de test (ver Figura 91). 

 

Figura 91. División del conjunto de datos. 

Para ejecutarlo en Orange se carga primero el fichero con el que se esté trabajando y se 
crea en el lienzo la estructura añadiendo el widget  «Test and Score». Para hacer una 
partición «Train-Test» se selecciona la opción de «Random sampling» (ver Figura 92) 

Figura 98. Modelo de Linear Regression con Orange.

Para saber cuál de los dos modelos ejecuta una mejor predicción, en este ejem-
plo habría que saber el índice de grasa corporal real de los sujetos y compararla con 
la predicción hallada en cada uno de los modelos. No obstante, si se utiliza para 
evaluar el conjunto de datos del entrenamiento va dar un error muy bajo e interesa 
que sea capaz de predecir en datos no entrenados previamente. Para mitigar este 
problema se puede dividir el conjunto de datos en datos de entrenamiento y datos de 
test (ver Figura 99).
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Figura 90. Modelo de Linear Regression con Orange. 

Para saber cuál de los dos modelos ejecuta una mejor predicción, en este ejemplo habría 
que saber el índice de grasa corporal real de los sujetos y compararla con la predicción 
hallada en cada uno de los modelos. No obstante, si se utiliza para evaluar el conjunto de 
datos del entrenamiento va dar un error muy bajo e interesa que sea capaz de predecir en 
datos no entrenados previamente. Para mitigar este problema se puede dividir el conjunto 
de datos en datos de entrenamiento y datos de test (ver Figura 91). 

 

Figura 91. División del conjunto de datos. 

Para ejecutarlo en Orange se carga primero el fichero con el que se esté trabajando y se 
crea en el lienzo la estructura añadiendo el widget  «Test and Score». Para hacer una 
partición «Train-Test» se selecciona la opción de «Random sampling» (ver Figura 92) 

Figura 99. División del conjunto de datos.

Para ejecutarlo en Orange se carga primero el fichero con el que se esté traba-
jando y se crea en el lienzo la estructura añadiendo el widget «Test and Score». Para 
hacer una partición «Train-Test» se selecciona la opción de «Random sampling» 
(ver Figura 99)
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Figura 70. Evaluar errores en Orange. 

Otra opción para mitigar el problema descrito es realizar una validación cruzada (ver 
Figura 93). 

 

Figura 93. Validación cruzada. 

Para aplicarla en Orange se cambia a la opción de «cross Validation», se puede marcar 
en las opciones de configuración de los algoritmos los modelos k-NN y «Linear 
Regression» con el fin de ver si se puede reducir más el error (ver Figura 94). 

Figura 100. Evaluar errores en Orange.

Otra opción para mitigar el problema descrito es realizar una validación cruza-
da (ver Figura 101).
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Figura 70. Evaluar errores en Orange. 

Otra opción para mitigar el problema descrito es realizar una validación cruzada (ver 
Figura 93). 

 

Figura 93. Validación cruzada. 

Para aplicarla en Orange se cambia a la opción de «cross Validation», se puede marcar 
en las opciones de configuración de los algoritmos los modelos k-NN y «Linear 
Regression» con el fin de ver si se puede reducir más el error (ver Figura 94). 

Figura 101. Validación cruzada.
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Para aplicarla en Orange se cambia a la opción de «cross Validation», se puede 
marcar en las opciones de configuración de los algoritmos los modelos k-NN y «Linear 
Regression» con el fin de ver si se puede reducir más el error (ver Figura 102).
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Figura 94. Test and Score en Orange. 

4.5.2.2. Utilización aprendizaje supervisado aplicando el algoritmos de Clasificación 
con Orange 

Un ejemplo de aplicación del algoritmo de clasificación sería por ejemplo la predicción 
del diagnóstico de un paciente. En este caso los atributos serían los valores de una 
analítica de sangre, de orina, etc. La clase Lupus (Si/NO). Existen muchos algoritmos 
para entrenar modelos de clasificación, entre ellos se ha elegido k-NN, los árboles de 
decisión y los «Ensembles» («Bagging» y «Boosting»). El algoritmo del vecino más 
cercano (k-NN) funciona igual que en la Regresión, pero el valor predicho es la moda en 
vez de la media. El espacio se divide en regiones en las que cada dato pertenece a una 
clase diferente. Dichas regiones dependen del valor concreto de k aplicado. Un ejemplo 
se puede consultar en la Figura 95. 

 

Figura 95. Representación del vecino más cercano (k-NN). 

Figura 102. Test and Score en Orange.

4.6.2.2.	 Utilización aprendizaje supervisado aplicando el algoritmos de 
Clasificación con Orange

Un ejemplo de aplicación del algoritmo de clasificación sería por ejemplo la 
predicción del diagnóstico de un paciente. En este caso los atributos serían los valo-
res de una analítica de sangre, de orina, etc. La clase Lupus (Si/NO). Existen muchos 
algoritmos para entrenar modelos de clasificación, entre ellos se ha elegido k-NN, los 
árboles de decisión y los «Ensembles» («Bagging» y «Boosting»). El algoritmo del 
vecino más cercano (k-NN) funciona igual que en la Regresión, pero el valor predi-
cho es la moda en vez de la media. El espacio se divide en regiones en las que cada 
dato pertenece a una clase diferente. Dichas regiones dependen del valor concreto de 
k aplicado. Un ejemplo se puede consultar en la Figura 103.
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Figura 95. Representación del vecino más cercano (k-NN). 

Figura 103. Representación del vecino más cercano (k-NN).
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Referente a los árboles de decisión parten el espacio en subconjuntos y tienen 
nodos de bifurcación (se corresponde con una pregunta de un atributo concreto), y 
nodos de hoja (son la predicción). Este algoritmo también funciona en regresión, de-
vuelve la media de los ejemplos que caen de la hoja, un ejemplo de su visualización 
se puede consultar en la Figura 104.
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Referente a los árboles de decisión parten el espacio en subconjuntos y tienen nodos de 
bifurcación (se corresponde con una pregunta de un atributo concreto), y nodos de hoja 
(son la predicción). Este algoritmo también funciona en regresión, devuelve la media de 
los ejemplos que caen de la hoja, un ejemplo de su visualización se puede consultar en 
la Figura 96. 

 

Figura 96. Representación de un árbol de decisión. 

En el primer paso del entrenamiento, si todos los ejemplos son de la misma clase se hará 
solo una hoja. Si no bifurca en ramas se escoge el atributo que mejor divide los ejemplos 
y se repite el proceso desde arriba con ejemplos 1 y con ejemplos 2. El segundo paso se 
hacen preguntas de cada bifurcación hasta llegar a una hoja. Para aplicarlo con Orange 
primero se abre el fichero, y después se construye una estructura para entrenar el árbol de 
decisión. Para ello, se utiliza el widget «Tree Viewer» con el fin de visualizar las 
bifurcaciones que se generarán (ver Figura 97). 

Figura 104. Representación de un árbol de decisión.

En el primer paso del entrenamiento, si todos los ejemplos son de la misma 
clase se hará solo una hoja. Si no bifurca en ramas se escoge el atributo que mejor 
divide los ejemplos y se repite el proceso desde arriba con ejemplos 1 y con ejem-
plos 2. El segundo paso se hacen preguntas de cada bifurcación hasta llegar a una 
hoja. Para aplicarlo con Orange primero se abre el fichero, y después se construye 
una estructura para entrenar el árbol de decisión. Para ello, se utiliza el widget «Tree 
Viewer» con el fin de visualizar las bifurcaciones que se generarán (ver Figura 105).
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Figura 97. Visualización de las bifurcaciones en Orange. 

Asimismo, se puede validar la calidad de un clasificador aplicando la validación cruzada 
o particiones de «Train-Test». Las métricas de evaluación son diferentes, ya que en este 
caso se aborda un problema de clasificación y no de regresión (ver Figura 98). 

 

Figura 98. Validación cruzada con Orange. 

4.5.2.3. Utilización aprendizaje supervisado aplicando Ensembles con Orange 

Los Ensembles incluyen muchos clasificadores y cada uno es un experto, las claves son 
que los expertos tienen que ser precisos y diversos. Para conseguir que los expertos sean 
diversos existen varias opciones: 

• Cada experto es un modelo diferente (k-NN, árbol de decisión, SVM, Naïve 
Bayes, etc.). 

• Cada experto se ha entrenado con ejemplos diferentes. 

Figura 105. Visualización de las bifurcaciones en Orange.
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Asimismo, se puede validar la calidad de un clasificador aplicando la valida-
ción cruzada o particiones de «Train-Test». Las métricas de evaluación son diferen-
tes, ya que en este caso se aborda un problema de clasificación y no de regresión (ver 
Figura 106).
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que los expertos tienen que ser precisos y diversos. Para conseguir que los expertos sean 
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• Cada experto se ha entrenado con ejemplos diferentes. 

Figura 106. Validación cruzada con Orange.

4.6.2.3.	 Utilización aprendizaje supervisado aplicando Ensembles con 
Orange

Los Ensembles incluyen muchos clasificadores y cada uno es un experto, las 
claves son que los expertos tienen que ser precisos y diversos. Para conseguir que los 
expertos sean diversos existen varias opciones:

•	 Cada experto es un modelo diferente (k-NN, árbol de decisión, SVM, Naïve 
Bayes, etc.).

•	 Cada experto se ha entrenado con ejemplos diferentes.
•	 Cada experto se ha entrenado con todos los ejemplos, pero teniendo en cuenta 

solo algunas características.
La máxima es que es más fácil entrenar muchos clasificadores buenos y com-

binarlos en uno muy bueno que intentar hacer un clasificador muy bueno desde el 
inicio.

4.6.2.4.	 Utilización aprendizaje no supervisado con Orange

El aprendizaje no supervisado indica que no se conoce la clase. Los algoritmos 
de clustering agrupan los ejemplos en grupos con características parecidas. Una re-
presentación gráfica se puede consultar en la Figura 107.
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• Cada experto se ha entrenado con todos los ejemplos, pero teniendo en cuenta solo 
algunas características. 

La máxima es que es más fácil entrenar muchos clasificadores buenos y combinarlos en 
uno muy bueno que intentar hacer un clasificador muy bueno desde el inicio. 

4.5.2.4. Utilización aprendizaje no supervisado con Orange 

El aprendizaje no supervisado indica que no se conoce la clase. Los algoritmos de 
clustering agrupan los ejemplos en grupos con características parecidas. Una 
representación gráfica se puede consultar en la Figura 99. 

 
Figura 99. Representación de Clustering. 

Un ejemplo de aplicación en el contexto de las Ciencias de la Salud puede ser la 
segmentación de imágenes médicas. Una visualización del algoritmo de clustering se 
puede consultar en k-means clustering. Para ejecutar el algoritmo en Orange, primero se 
carga el fichero y se elige el widget «Select Columns» (ver Figura 100). 

 

 
Figura 100. «Select Columns» en Orange. 

Figura 107. Representación de Clustering.

Un ejemplo de aplicación en el contexto de las Ciencias de la Salud puede ser 
la segmentación de imágenes médicas. Una visualización del algoritmo de cluste-
ring se puede consultar en k-means clustering. Para ejecutar el algoritmo en Orange, 
primero se carga el fichero y se elige el widget «Select Columns» (ver Figura 108).
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Figura 100. «Select Columns» en Orange. Figura 108. «Select Columns» en Orange.

Seguidamente, las columnas seleccionadas se relacionan con el widget 
«k-Means», después se configura el número de clústeres. Los clústeres se pueden 
visualizar mediante un «Scatter Plot» (ver Figura 109).
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Seguidamente, las columnas seleccionadas se relacionan con el widget «k-Means», 
después se configura el número de clústeres. Los clústeres se pueden visualizar mediante 
un «Scatter Plot» (ver Figura 101). 

 
Figura 71.  k-Means en Orange. 

Para una ampliación de este capítulo se puede consultar: 

Sáiz Manzanares, M.C. (2019). Metacognición e inteligencia artificial: más allá del 
paralelismo de funcionamiento. Repositorio Institucional. Universidad de Burgos. 
https://doi.org/10.36443/10259/5357 . Recuperado de http://hdl.handle.net/10259/5357 
(acceso 2/11/2024). 

Arnaiz González, Á., Díez Pastor, J.F., y Rodríguez Arribas, S. (2024). MÓDULO. IV 
Técnicas de observación y evaluación a partir de recursos inteligentes: introducción a la 
minería de datos, en Sáiz-Manzanares, M.C., y Santamaría Vázquez, M. (Eds.), 
Formación y Especialización en Atención Temprana: uso de Recursos Tecnológicos y de 
Inteligencia Artificial (145- 155). Burgos: Servicio de Publicaciones de la Universidad 
de Burgos. https://doi.org/10.36443/9788418465802  

4.6. Ejemplo práctico del trabajo con el software Orange v. 3.38.1 

En este caso se elige la importación de datos desde un fichero CSV File Import 

 

Figura 109. k-Means en Orange.

Para una ampliación de este capítulo se puede consultar:

Sáiz Manzanares, M.C. (2019). Metacognición e inteligencia artificial: más allá 
del paralelismo de funcionamiento. Repositorio Institucional. Universidad 
de Burgos. https://doi.org/10.36443/10259/5357 . Recuperado de http://hdl.
handle.net/10259/5357 (acceso 2/11/2024).

Arnaiz González, Á., Díez Pastor, J.F., y Rodríguez Arribas, S. (2024). MÓDULO. IV 
Técnicas de observación y evaluación a partir de recursos inteligentes: introducción 
a la minería de datos, en Sáiz-Manzanares, M.C., y Santamaría Vázquez, M. (Eds.), 
Formación y Especialización en Atención Temprana: uso de Recursos Tecnológicos 
y de Inteligencia Artificial (145- 155). Burgos: Servicio de Publicaciones de la 
Universidad de Burgos. https://doi.org/10.36443/9788418465802

4.7.	 Ejemplo práctico del trabajo con el software Orange v. 3.38.1

En este caso se elige la importación de datos desde un fichero CSV File Import 
(ver Figura 110)
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Seguidamente, se realiza un análisis de datos descriptivos este se puede hacer con Feature 
Statistics primero se elige el widget color para dar valor del color a cada grupo en este 
caso se distinguen dos grupos, grupo 1 grupo 2 son estudiantes de dos titulaciones 
distintas en distintas variables (estrategias metacognitivas medidas con ACRA ), learning 
outcomes totales, y valoraciones de resultados de aprendizaje en distintas pruebas de 
evaluación continua, accesos a la plataforma virtual y satisfacción percibida con la 
enseñanza). Se obtienen estadísticos descriptivos de Media, Mediana, Dispersión, valores 
máximos y mínimos y valores perdidos. 

 

 

Figura 110. Selección archivo csv.

https://doi.org/10.36443/10259/5357
http://hdl.handle.net/10259/5357
http://hdl.handle.net/10259/5357
https://doi.org/10.36443/9788418465802 
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Seguidamente, se realiza un análisis de datos descriptivos este se puede hacer con 
Feature Statistics (ver Figura 111) primero se elige el widget color para dar valor del 
color a cada grupo en este caso se distinguen dos grupos, grupo 1 grupo 2 son estudiantes 
de dos titulaciones distintas en distintas variables (estrategias metacognitivas medidas 
con ACRA ), learning outcomes totales, y valoraciones de resultados de aprendizaje en 
distintas pruebas de evaluación continua, accesos a la plataforma virtual y satisfacción 
percibida con la enseñanza). Se obtienen estadísticos descriptivos de Media, Mediana, 
Dispersión, valores máximos y mínimos y valores perdidos (ver Figura 112).
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Figura 111. Feature Statistics
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También, se puede obtener un widget de Rank, este hace referencia a la puntuación de las 
variables según su correlación con la variable objetivo discreta o numérica, basándose en 
los evaluadores internos aplicables (como ganancia de información, ji-cuadrado y 
regresión lineal) y en cualquier modelo externo conectado que admita la puntuación, 
como la regresión lineal, la regresión logística, el bosque aleatorio, el SGD, etc. El widget 
también puede manejar datos no supervisados, pero solo por evaluadores externos, como 
el PCA. En este caso se ha elegido 5 valores. En síntesis, Rank, clasifica atributos en 
conjuntos de datos de clasificación o regresión. El widget Rank puntúa las variables según 
su correlación con la variable objetivo discreta o numérica, basándose en los scorers 
internos aplicables (como ganancia de información, chi-cuadrado y regresión lineal) y en 
cualquier modelo externo conectado que admita puntuación, como regresión lineal, 
regresión logística, bosque aleatorio, SGD, etc. El widget también puede manejar datos 
no supervisados, pero solo mediante scorers externos, como PCA.  

Métodos de puntuación (clasificación) 

Gain Ratio (Relación de ganancia): una relación entre la ganancia de información y la 
información intrínseca del atributo, que reduce el sesgo hacia las características 
multivalor que se produce en la ganancia de información. 

Gain (Ganancia): la cantidad esperada de información (reducción de la entropía). 

Gini: la desigualdad entre los valores de una distribución de frecuencia. 

ANOVA: la diferencia entre los valores medios de la característica en diferentes clases. 

Chi2: dependencia entre la característica y la clase medida por la estadística chi-cuadrado. 

Figura 112. Estadísticos descriptivos de las variables seleccionadas.

También, se puede obtener un widget de Rank, este hace referencia a la pun-
tuación de las variables según su correlación con la variable objetivo discreta o nu-
mérica, basándose en los evaluadores internos aplicables (como ganancia de infor-
mación, ji-cuadrado y regresión lineal) y en cualquier modelo externo conectado 
que admita la puntuación, como la regresión lineal, la regresión logística, el bosque 
aleatorio, el SGD, etc. El widget también puede manejar datos no supervisados, pero 
solo por evaluadores externos, como el PCA. En este caso se ha elegido 5 valores. En 
síntesis, Rank, clasifica atributos en conjuntos de datos de clasificación o regresión. 
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El widget Rank puntúa las variables según su correlación con la variable objetivo 
discreta o numérica, basándose en los scorers internos aplicables (como ganancia 
de información, chi-cuadrado y regresión lineal) y en cualquier modelo externo co-
nectado que admita puntuación, como regresión lineal, regresión logística, bosque 
aleatorio, SGD, etc. El widget también puede manejar datos no supervisados, pero 
solo mediante scorers externos, como PCA.

Métodos de puntuación (clasificación)
Gain Ratio (Relación de ganancia): una relación entre la ganancia de informa-

ción y la información intrínseca del atributo, que reduce el sesgo hacia las caracterís-
ticas multivalor que se produce en la ganancia de información.

Gain (Ganancia): la cantidad esperada de información (reducción de la 
entropía).

Gini: la desigualdad entre los valores de una distribución de frecuencia.
ANOVA: la diferencia entre los valores medios de la característica en diferen-

tes clases.
Chi2: dependencia entre la característica y la clase medida por la estadística 

chi-cuadrado.
ReliefF: la capacidad de un atributo para distinguir entre clases en instancias de 

datos similares
FCBF (filtro rápido basado en correlación): medida basada en la entro-

pía, que también identifica la redundancia debida a correlaciones por pares entre 
características.

Además, Rank puede conectar ciertos algoritmos de aprendizaje que permiten 
puntuar las características según su importancia en los modelos que construyen (por 
ejemplo, regresión logística, bosque aleatorio, SGD). Se debe tener en cuenta que 
los datos se normalizan (ver Figura 113) antes de la clasificación (ver Figura 114).
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ReliefF: la capacidad de un atributo para distinguir entre clases en instancias de datos 
similares 

FCBF (filtro rápido basado en correlación): medida basada en la entropía, que también 
identifica la redundancia debida a correlaciones por pares entre características. 

Además, Rank puede conectar ciertos algoritmos de aprendizaje que permiten puntuar las 
características según su importancia en los modelos que construyen (por ejemplo, 
regresión logística, bosque aleatorio, SGD). Se debe tener en cuenta que los datos se 
normalizan antes de la clasificación. 

 

 

También, se pueden utilizar de transformación widget de Transformation. Por ejemplo, 
se puede utilizar widget de Pivot Table pueden seleccionar columnas y filas y elegir la 
variable Target sobre la que se quiere analiza el comportamiento de la transformación. 
En resumen, Pivot Table, es una tabla de contingencia que puede proporcionar distintos 
datos descriptivos sobre variables. Si bien, los datos con una sola variable numérica no 
se pueden mostrar en la tabla la variable de agrupación tiene que ser una variable discreta. 
Se pueden obtener distintas combinaciones de los datos y valores de estadísticos 
descriptivos. Por ejemplo, se va a estudiar la distribución de los grupos en las tres 
subescalas de la Escala de Estrategias Metacognitivas de ACRA (Autoconocimiento, 
Planificación, y Automanejo). 

Figura 113. Normalización de datos.
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Figura 114. Resultado de la normalización.

También, se pueden utilizar de transformación widget de Transformation. Por 
ejemplo, se puede utilizar widget de Pivot Table pueden seleccionar columnas y 
filas y elegir la variable Target sobre la que se quiere analiza el comportamiento de 
la transformación. En resumen, Pivot Table, es una tabla de contingencia que pue-
de proporcionar distintos datos descriptivos sobre variables. Si bien, los datos con 
una sola variable numérica no se pueden mostrar en la tabla la variable de agrupa-
ción tiene que ser una variable discreta. Se pueden obtener distintas combinacio-
nes de los datos y valores de estadísticos descriptivos. Por ejemplo, se va a estudiar 
la distribución de los grupos en las tres subescalas de la Escala de Estrategias 
Metacognitivas de ACRA (Autoconocimiento, Planificación, y Automanejo). (ver 
Figuras 115-118)
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Autoconocimiento Figura 115. Selección Tabla pivote.
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Planificación 

 

Figura 116. Tabla pivote subescala de autoconocimiento
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Automanejo 

Figura 117. Tabla pivote subescala de planificación.
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 Figura 118. Tabla pivote subescala de automanejo.
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Asimismo, se puede visualizar los datos aplicando el widget de Box Plot (ver 
Figura 119). Esta muestra las distribuciones de los valores de los atributos. Es una 
buena práctica comprobar cualquier dato nuevo con este widget para descubrir rápi-
damente cualquier anomalía, como valores duplicados (por ejemplo, gray y grey), 
valores atípicos y similares. Se pueden seleccionar barras, por ejemplo, valores para 
datos categóricos o el rango cuantitativo para datos numéricos. (ver Figura 120).
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Asimismo, se puede visualizar los datos aplicando el widget de Box Plot. Esta muestra 
las distribuciones de los valores de los atributos. Es una buena práctica comprobar 
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cuantitativo para datos numéricos. 

 

Por ejemplo, se puede realizar una comparación de medias entre el Grupo 1 y el Grupo 
2 respecto de la media de visitas por días realizadas a lo largo del semestre. 

Figura 119. Box Plot.
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Figura 120. Box Plot.
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Por ejemplo, se puede realizar una comparación de medias entre el Grupo 1 y 
el Grupo 2 respecto de la media de visitas por días realizadas a lo largo del semestre 
(ver Figura 121).

143 
 

 

 

También, se puede aplicar un widget de Line Plot. Este es un tipo de diagrama que 
muestra los datos como una serie de puntos, conectados por segmentos de línea recta. 
Solo funciona para datos numéricos, mientras que el diagrama de categorías puede 
utilizarse para agrupar los puntos de datos. En este caso se visualizan los datos en el Grupo 
1 y en el Grupo 2 respecto a las distintas variables respecto del Grupo 1 y del Grupo 2. 

 

 

Figura 121. Box Plot comparación de medias.

También, se puede aplicar un widget de Line Plot (ver Figura 122). Este es un 
tipo de diagrama que muestra los datos como una serie de puntos, conectados por 
segmentos de línea recta. Solo funciona para datos numéricos, mientras que el dia-
grama de categorías puede utilizarse para agrupar los puntos de datos. En este caso 
se visualizan los datos en el Grupo 1 y en el Grupo 2 respecto a las distintas variables 
respecto del Grupo 1 y del Grupo 2 (ver Figura 123).
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Figura 122. Selección Line Plot
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De igual modo, se puede aplicar el widget de Violin Plot. Este desempeña una función 
similar a la del diagrama de caja. Muestra la distribución de datos cuantitativos en varios 
niveles de una variable categórica, de modo que esas distribuciones puedan compararse. 
A diferencia del diagrama de caja, en el que todos los componentes del diagrama 
corresponden a puntos de datos reales, el diagrama de violín presenta una estimación de 
la densidad del núcleo de la distribución subyacente. El Kernel se utiliza para estimar la 
densidad. Los kernels posibles son: Normal, Epanechnikov y Lineal. También, podría 
utilizarse para la detección de valores atípicos. En este caso se utiliza para visualizar la 
comparativa de frecuencias entre el Grupo 1 y el Grupo 2 en distintas variables 
seguidamente se presenta un ejemplo en la comparativa en la variable de Planificación de 
la «Escala de Estrategias Metacognitivas» de ACRA. 

 

 

Figura 123. Ejemplo de Line Plot.

De igual modo, se puede aplicar el widget de Violin Plot. Este desempeña una 
función similar a la del diagrama de caja. Muestra la distribución de datos cuantitativos 
en varios niveles de una variable categórica, de modo que esas distribuciones puedan 
compararse. A diferencia del diagrama de caja, en el que todos los componentes del 
diagrama corresponden a puntos de datos reales, el diagrama de violín presenta una 
estimación de la densidad del núcleo de la distribución subyacente. El Kernel se utiliza 
para estimar la densidad. Los kernels posibles son: Normal, Epanechnikov y Lineal. 
También, podría utilizarse para la detección de valores atípicos. En este caso se utiliza 
para visualizar la comparativa de frecuencias entre el Grupo 1 y el Grupo 2 en distin-
tas variables seguidamente se presenta un ejemplo en la comparativa en la variable de 
Planificación de la «Escala de Estrategias Metacognitivas» de ACRA. (ver Figura 124)
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Figura 124. Ejemplo Violin Plot.
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También, se pueden visualizar el widget de Scatter Plot. Este es un diagrama 
de dispersión con análisis exploratorio. Proporciona una visualización de diagrama 
de dispersión bidimensional. Los datos se muestran como una colección de puntos, 
cada uno con el valor del atributo del eje x que determina la posición en el eje hori-
zontal y el valor del atributo del eje y que determina la posición en el eje vertical. En 
el lado izquierdo del widget se pueden ajustar varias propiedades del gráfico, como 
el color, el tamaño y la forma de los puntos, los títulos de los ejes, el tamaño máximo 
de los puntos y el temblor. A continuación, se muestra una instantánea del diagrama 
de dispersión del conjunto de datos Iris con el color correspondiente al atributo de 
clase.

Seguidamente, se presenta un ejemplo respecto de las distintas variables desde 
la distribución en el Grupo 1 y en el Grupo 2. (ver Figura 125 y Figura 126).
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 Figura 125. Ejemplo Scatter Plot.
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Asimismo, se pueden visualizar el widget de Radviz (Hoffman et al. 1997). Este es una 
técnica de visualización multidimensional no lineal que puede mostrar datos definidos 
por tres o más variables en una proyección bidimensional. Las variables visualizadas se 
presentan como puntos de anclaje espaciados equidistantemente alrededor del perímetro 
de un círculo unitario. Los casos de datos se muestran como puntos dentro del círculo, 
con sus posiciones determinadas por una metáfora de la física: cada punto se mantiene en 
su lugar con resortes que están unidos en el otro extremo a los anclajes variables. La 
rigidez de cada resorte es proporcional al valor de la variable correspondiente y el punto 
termina en la posición donde las fuerzas del resorte están en equilibrio. Antes de la 
visualización, los valores de las variables se escalan para que estén entre 0 y 1. Las 
instancias de datos que están cerca de un conjunto de anclajes variables tienen valores 
más altos para estas variables que para las demás. Seguidamente, se presenta un ejemplo 
respecto de las distintas variables desde la distribución en el Grupo 1 y en el Grupo 2. 

 

 

Figura 126. Ejemplo de Scatter Plot aplicando regresión.

Asimismo, se pueden visualizar el widget de Radviz (Hoffman et al. 1997). Este 
es una técnica de visualización multidimensional no lineal que puede mostrar datos 
definidos por tres o más variables en una proyección bidimensional. Las variables 
visualizadas se presentan como puntos de anclaje espaciados equidistantemente al-
rededor del perímetro de un círculo unitario. Los casos de datos se muestran como 
puntos dentro del círculo, con sus posiciones determinadas por una metáfora de la 
física: cada punto se mantiene en su lugar con resortes que están unidos en el otro 
extremo a los anclajes variables. La rigidez de cada resorte es proporcional al valor 
de la variable correspondiente y el punto termina en la posición donde las fuerzas 
del resorte están en equilibrio. Antes de la visualización, los valores de las variables 
se escalan para que estén entre 0 y 1. Las instancias de datos que están cerca de un 
conjunto de anclajes variables tienen valores más altos para estas variables que para 
las demás. Seguidamente, se presenta un ejemplo respecto de las distintas variables 
desde la distribución en el Grupo 1 y en el Grupo 2 (ver Figura 127).
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Asimismo, se pueden visualizar el widget de Heat Map. Este es un método gráfico para 
visualizar valores de atributos en una matriz bidireccional. Solo funciona en conjuntos de 
datos que contengan variables numéricas. Los valores se representan por colores según la 
paleta de colores seleccionada. Al combinar la variable de clase y los atributos en los ejes 
x e y, se visualiza dónde son más fuertes y dónde más débiles los valores de los atributos, 
lo que nos permite encontrar características típicas para cada clase. El widget permite 
seleccionar filas con un clic y arrastrando. Se puede ampliar con Ctrl++ (Cmd++) y 
reducir con Ctrl+- (Cmd+-). Ctrl+0 (Cmd+0) restablece el zoom a la versión ampliada, 
mientras que Ctrl+9 (Cmd+9) lo restablece al valor predeterminado. 

 

 

 

 

 

Figura 127. Ejemplo Radviz.

Asimismo, se pueden visualizar el widget de Heat Map. Este es un método grá-
fico para visualizar valores de atributos en una matriz bidireccional. Solo funciona 
en conjuntos de datos que contengan variables numéricas. Los valores se representan 
por colores según la paleta de colores seleccionada. Al combinar la variable de clase 
y los atributos en los ejes x e y, se visualiza dónde son más fuertes y dónde más dé-
biles los valores de los atributos, lo que nos permite encontrar características típicas 
para cada clase. El widget permite seleccionar filas con un clic y arrastrando. Se 
puede ampliar con Ctrl++ (Cmd++) y reducir con Ctrl+- (Cmd+-). Ctrl+0 (Cmd+0) 
restablece el zoom a la versión ampliada, mientras que Ctrl+9 (Cmd+9) lo restablece 
al valor predeterminado (ver Figura 128 y Figura 129).
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mientras que Ctrl+9 (Cmd+9) lo restablece al valor predeterminado. 

 

 

 

 

 

Figura 128. Pasos para hacer un Heat Map en Orange.
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Análisis de Machine Learning Supervisado 

Se ha utilizado el widget de árbol (Tree). Este es un algoritmo simple que divide los datos 
en nodos por pureza de clase (ganancia de información para la variable objetivo 
categórica y MSE para la numérica). Es un precursor de Random Forest. Tree in Orange 
está diseñado internamente y puede manejar conjuntos de datos categóricos y numéricos. 
También se puede utilizar tanto para tareas de clasificación como de regresión. Para 
visualizar el árbol se debe añadir el widget de Tree Viewer. 

Figura 129. Ejemplo de Heat Map.

Análisis de Machine Learning Supervisado
Se ha utilizado el widget de árbol (Tree). Este es un algoritmo simple que divi-

de los datos en nodos por pureza de clase (ganancia de información para la variable 
objetivo categórica y MSE para la numérica). Es un precursor de Random Forest. 
Tree in Orange está diseñado internamente y puede manejar conjuntos de datos ca-
tegóricos y numéricos. También se puede utilizar tanto para tareas de clasificación 
como de regresión. Para visualizar el árbol se debe añadir el widget de Tree Viewer 
(ver Figura 130).



tema 4: utilización de las técnicas de aprendizaje automático y de inteligencia ...	 169

149 
 

 

 

 

 

Análisis de Machine Learning No Supervisado 
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Análisis de Machine Learning No Supervisado 

 

Figura 130. Ejempo de un árbol de decisión con Orange.

Análisis de Machine Learning No Supervisado (ver Figura 131).
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Se puede incluir el widget de Principal Component Analysis (PCA) calcula la 
transformación lineal PCA de los datos de entrada. Genera un conjunto de datos 
transformado con pesos de instancias individuales o pesos de componentes principales. 

 

Seguidamente, se presenta un ejemplo de PCA sobre la Base de Datos de aprendizaje. 

Figura 131. Algoritmos de clustering en Orange.
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Se puede incluir el widget de Principal Component Analysis (PCA) calcula 
la transformación lineal PCA de los datos de entrada. Genera un conjunto de datos 
transformado con pesos de instancias individuales o pesos de componentes princi-
pales (ver Figura 132).
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Se puede incluir el widget de Principal Component Analysis (PCA) calcula la 
transformación lineal PCA de los datos de entrada. Genera un conjunto de datos 
transformado con pesos de instancias individuales o pesos de componentes principales. 

 

Seguidamente, se presenta un ejemplo de PCA sobre la Base de Datos de aprendizaje. 
Figura 132. Pasos para hacer un PCA con Orange.

Seguidamente, se presenta un ejemplo de PCA sobre la Base de Datos de apren-
dizaje (ver Figura 133).
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Asimismo, se pueden visualizar el widget de Multidimensional scaling (MDS). MDS es 
una técnica que encuentra una proyección de puntos de baja dimensión (en nuestro caso, 
bidimensional), donde intenta ajustar las distancias entre puntos lo mejor posible. El 
ajuste perfecto suele ser imposible de obtener, ya que los datos son de alta dimensión o 
las distancias no son euclidianas. En la entrada, el widget necesita un conjunto de datos o 
una matriz de distancias. Al visualizar las distancias entre filas, también puede ajustar el 
color de los puntos, cambiar su forma, marcarlos y mostrarlos al seleccionarlos. El 
algoritmo mueve los puntos de forma iterativa en una especie de simulación de un modelo 
físico: si dos puntos están demasiado cerca el uno del otro (o demasiado lejos), hay una 
fuerza que los separa (o los acerca). El cambio de posición del punto en cada intervalo de 
tiempo corresponde a la suma de las fuerzas que actúan sobre él. 

Seguidamente, se presenta un ejemplo respecto de las distintas variables desde la 
distribución en el Grupo 1 y en el Grupo 2. 

 

 

 

Figura 133. Ejemplo de PCA.

Asimismo, se pueden visualizar el widget de Multidimensional scaling (MDS). 
MDS es una técnica que encuentra una proyección de puntos de baja dimensión (en 
nuestro caso, bidimensional), donde intenta ajustar las distancias entre puntos lo mejor 
posible. El ajuste perfecto suele ser imposible de obtener, ya que los datos son de alta 
dimensión o las distancias no son euclidianas (ver Figura 134). En la entrada, el widget 
necesita un conjunto de datos o una matriz de distancias. Al visualizar las distancias 
entre filas, también puede ajustar el color de los puntos, cambiar su forma, marcarlos y 
mostrarlos al seleccionarlos. El algoritmo mueve los puntos de forma iterativa en una 
especie de simulación de un modelo físico: si dos puntos están demasiado cerca el uno 
del otro (o demasiado lejos), hay una fuerza que los separa (o los acerca). El cambio 
de posición del punto en cada intervalo de tiempo corresponde a la suma de las fuerzas 
que actúan sobre él (ver Figura 135).
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Seguidamente, se presenta un ejemplo respecto de las distintas variables desde 
la distribución en el Grupo 1 y en el Grupo 2.
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Asimismo, se pueden visualizar el widget de Multidimensional scaling (MDS). MDS es 
una técnica que encuentra una proyección de puntos de baja dimensión (en nuestro caso, 
bidimensional), donde intenta ajustar las distancias entre puntos lo mejor posible. El 
ajuste perfecto suele ser imposible de obtener, ya que los datos son de alta dimensión o 
las distancias no son euclidianas. En la entrada, el widget necesita un conjunto de datos o 
una matriz de distancias. Al visualizar las distancias entre filas, también puede ajustar el 
color de los puntos, cambiar su forma, marcarlos y mostrarlos al seleccionarlos. El 
algoritmo mueve los puntos de forma iterativa en una especie de simulación de un modelo 
físico: si dos puntos están demasiado cerca el uno del otro (o demasiado lejos), hay una 
fuerza que los separa (o los acerca). El cambio de posición del punto en cada intervalo de 
tiempo corresponde a la suma de las fuerzas que actúan sobre él. 

Seguidamente, se presenta un ejemplo respecto de las distintas variables desde la 
distribución en el Grupo 1 y en el Grupo 2. 

 

 

 Figura 134. Pasos para hacer un MDS en Orange.
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También, se puede estudiar el MDS aplicando un PCA 

 

 

De igual modo, se puede analizar la disposición de los miembros de cada grupo en 
distintas variables. Por ejemplo, vamos a estudiar la disposición respecto de las subescalas 
de la Escala de Estrategias Metacognitivas de ACRA (autoconocimiento, planificación y 
auto-evaluación). 

Figura 135. Ejemplo de MDS con Orange.

También, se puede estudiar el MDS aplicando un PCA (ver Figura 136).
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También, se puede estudiar el MDS aplicando un PCA 

 

 

De igual modo, se puede analizar la disposición de los miembros de cada grupo en 
distintas variables. Por ejemplo, vamos a estudiar la disposición respecto de las subescalas 
de la Escala de Estrategias Metacognitivas de ACRA (autoconocimiento, planificación y 
auto-evaluación). 

Figura 136. Ejemplo de MDS con PCA en Orange.

De igual modo, se puede analizar la disposición de los miembros de cada grupo 
en distintas variables. Por ejemplo, vamos a estudiar la disposición respecto de las 
subescalas de la Escala de Estrategias Metacognitivas de ACRA (autoconocimiento, 
planificación y auto-evaluación). (ver Figura 137, Figura 138 y Figura 139).
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Figura 137. Ejemplo de MDS con un análisis de disposición en las subescalas de 
Estrategias Metacognitivas de ACRA.
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Figura 138. Ejemplo de MDS con un análisis de disposición en las subescalas de 
Estrategias Metacognitivas de ACRA.
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Asimismo, se pueden visualizar el widget de self organizing (SOM). SOM es un tipo de 
red neuronal artificial (RNA) que se entrena mediante aprendizaje no supervisado para 
producir una representación discreta bidimensional de los datos. Es un método para 
reducir la dimensionalidad. Los mapas autoorganizados utilizan una función de vecindad 
para preservar las propiedades topológicas del espacio de entrada. Los puntos de la 
cuadrícula representan instancias de datos. Por defecto, el tamaño del punto corresponde 
al número de instancias representadas por el punto. Los puntos se colorean según la clase 
mayoritaria (si está disponible), mientras que la intensidad del color interior muestra la 
proporción de la clase mayoritaria. Para ver la distribución de clases, seleccione la opción 
Mostrar gráficos circulares. Al igual que otros widgets de visualización, los mapas 
autoorganizados también admiten la selección interactiva de grupos. Se puede utilizar la 
tecla Mayús para seleccionar un nuevo grupo y Ctrl+Mayús para añadirlo al grupo 
existente. 

 

 

Un ejemplo, de procesamiento con la BBDD de ejemplo se puede consultar 
seguidamente. 

Figura 139. Ejemplo de MDS con un análisis de disposición en las subescalas de 
Estrategias Metacognitivas de ACRA.

Asimismo, se pueden visualizar el widget de self organizing (SOM). SOM es 
un tipo de red neuronal artificial (RNA) que se entrena mediante aprendizaje no su-
pervisado para producir una representación discreta bidimensional de los datos (ver 
Figura 140). Es un método para reducir la dimensionalidad. Los mapas autoorgani-
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zados utilizan una función de vecindad para preservar las propiedades topológicas 
del espacio de entrada. Los puntos de la cuadrícula representan instancias de datos. 
Por defecto, el tamaño del punto corresponde al número de instancias representadas 
por el punto. Los puntos se colorean según la clase mayoritaria (si está disponible), 
mientras que la intensidad del color interior muestra la proporción de la clase ma-
yoritaria. Para ver la distribución de clases, seleccione la opción Mostrar gráficos 
circulares. Al igual que otros widgets de visualización, los mapas autoorganizados 
también admiten la selección interactiva de grupos. Se puede utilizar la tecla Mayús 
para seleccionar un nuevo grupo y Ctrl+Mayús para añadirlo al grupo existente.

154 
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Mostrar gráficos circulares. Al igual que otros widgets de visualización, los mapas 
autoorganizados también admiten la selección interactiva de grupos. Se puede utilizar la 
tecla Mayús para seleccionar un nuevo grupo y Ctrl+Mayús para añadirlo al grupo 
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Un ejemplo, de procesamiento con la BBDD de ejemplo se puede consultar 
seguidamente. 

Figura 140. Pasos para hallar organizing (SOM) en Orange.

Un ejemplo, de procesamiento con la BBDD de ejemplo se puede consultar 
seguidamente. (ver Figura 141, Figura 142 y Figura 143).
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Figura 141. Ejemplo de SOM.
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 Figura 142. Ejemplo de SOM.
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Asimismo, se puede aplicar el widget Manifold Learning. Este reduce la dimensionalidad 
de los datos de alta dimensión y, por lo tanto, es muy útil en combinación con widgets de 
visualización. Es una técnica que encuentra una variedad no lineal dentro del espacio de 
dimensiones superiores. El widget genera entonces nuevas coordenadas que corresponden 
a un espacio bidimensional. Estos datos pueden visualizarse posteriormente con un 
diagrama de dispersión u otros widgets de visualización. Produce diferentes 
incrustaciones para datos de alta dimensión. Todas las proyecciones utilizan el 
preprocesamiento predeterminado si es necesario. Se ejecuta en el siguiente orden: 
continuación de variables categóricas (con una característica por valor), imputación de 
valores faltantes con valores medios. Para anular el preprocesamiento predeterminado, 
preprocesar los datos de antemano con el widget Preprocess. El widget de aprendizaje 
múltiple transforma datos de alta dimensión en una aproximación de menor dimensión. 
Esto lo hace ideal para visualizar conjuntos de datos con muchas características. 
Utilizamos voting.tab para mapear datos de 16 dimensiones en un gráfico 2D. Luego se 
utiliza Scatter Plot para trazar las incrustaciones. 

 

 

Figura 143. Ejemplo de SOM.

Asimismo, se puede aplicar el widget Manifold Learning. Este reduce la dimen-
sionalidad de los datos de alta dimensión y, por lo tanto, es muy útil en combinación 
con widgets de visualización (ver Figura 144). Es una técnica que encuentra una 
variedad no lineal dentro del espacio de dimensiones superiores. El widget genera 
entonces nuevas coordenadas que corresponden a un espacio bidimensional. Estos 
datos pueden visualizarse posteriormente con un diagrama de dispersión u otros wi-
dgets de visualización. Produce diferentes incrustaciones para datos de alta dimen-
sión. Todas las proyecciones utilizan el preprocesamiento predeterminado si es ne-
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cesario. Se ejecuta en el siguiente orden: continuación de variables categóricas (con 
una característica por valor), imputación de valores faltantes con valores medios. 
Para anular el preprocesamiento predeterminado, preprocesar los datos de antemano 
con el widget Preprocess. El widget de aprendizaje múltiple transforma datos de 
alta dimensión en una aproximación de menor dimensión. Esto lo hace ideal para 
visualizar conjuntos de datos con muchas características. Utilizamos voting.tab para 
mapear datos de 16 dimensiones en un gráfico 2D. Luego se utiliza Scatter Plot para 
trazar las incrustaciones (ver Figura 145).
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Utilizamos voting.tab para mapear datos de 16 dimensiones en un gráfico 2D. Luego se 
utiliza Scatter Plot para trazar las incrustaciones. 

 

 
Figura 144. Pasos para hallar Manifold Learning.
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Preguntas de autoevaluación Tema 4. 

1. ¿Qué se debe hacer antes de extraer los datos en un proceso de análisis en investigación? 

a) Aplicar directamente técnicas de Machine Learning. 

b) Preprocesar los datos para eliminar ruido. 

c) Formular preguntas de investigación relacionadas con el problema. 

d) Evaluar el rendimiento de los algoritmos utilizados. 

2. ¿En qué consiste la fase de integración de los datos dentro del proceso de minería de datos? 

a) En aplicar algoritmos para clasificar los datos según su origen. 

b) En fusionar datos de múltiples bases, evitando redundancias e inconsistencias. 

c) En eliminar los datos que no tienen una fuente clara. 

d) En transformar los datos a gráficos para visualizarlos fácilmente. 

3. ¿Cuándo se utiliza el aprendizaje supervisado en minería de datos? 

a) Cuando se trabaja con datos no estructurados y sin contexto. 

b) Cuando los datos están etiquetados con una clase o valor objetivo 

c) Cuando se desconoce la variable dependiente y no hay etiquetas. 

d) Cuando se quieren generar datos sintéticos sin supervisión. 

4. ¿Cuál es el objetivo principal del aprendizaje no supervisado? 

 

Figura 145. Ejemplo de Manifold Learning.

4.8.	 Preguntas de autoevaluación Tema 4.

1.	 ¿Qué se debe hacer antes de extraer los datos en un proceso de análisis en 
investigación?

a) Aplicar directamente técnicas de Machine Learning.
b) Preprocesar los datos para eliminar ruido.
c) Formular preguntas de investigación relacionadas con el problema.
d) Evaluar el rendimiento de los algoritmos utilizados.
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2.	 ¿En qué consiste la fase de integración de los datos dentro del proceso de minería 
de datos?

a) En aplicar algoritmos para clasificar los datos según su origen.
b)	En fusionar datos de múltiples bases, evitando redundancias e inconsistencias.
c)	En eliminar los datos que no tienen una fuente clara.
d)	En transformar los datos a gráficos para visualizarlos fácilmente.

3. ¿Cuándo se utiliza el aprendizaje supervisado en minería de datos?

a) Cuando se trabaja con datos no estructurados y sin contexto.
b) Cuando los datos están etiquetados con una clase o valor objetivo
c) Cuando se desconoce la variable dependiente y no hay etiquetas.
d) Cuando se quieren generar datos sintéticos sin supervisión.

4. ¿Cuál es el objetivo principal del aprendizaje no supervisado?

a) Predecir una etiqueta o valor objetivo a partir de datos etiquetados.
b) Generar un modelo predictivo para nuevas instancias.
c) Encontrar patrones, relaciones o agrupaciones en datos sin etiquetar.
d) Transformar datos numéricos en datos categóricos para el análisis.

5. ¿Cuál es una diferencia clave entre el Educational Data Mining (EDM) y el 
Educational Process Mining?

a) El EDM solo analiza datos de encuestas, mientras que el Process Mining ana-
liza exámenes.

b) El EDM se centra en el resultado y variables asociadas, mientras que el 
Process Mining se enfoca en el proceso en sí.

c) El Process Mining solo aplica algoritmos de clustering, mientras que el EDM 
usa Machine Learning.

d) El EDM se usa en contextos empresariales, y el Process Mining únicamente 
en centros educativos.

4.9.	 Práctica Tema 4.

Dada una base de datos en la que se definen distintas variables dependientes 
e independientes aplicar técnicas de Machine Learning supervisadas y no supervi-
sadas justificando previamente las hipótesis de partida y plasmando el análisis de 
datos desde el uso de algoritmos supervisados y no supervisados. Para ello, se puede 
utilizar el software libre de data mining Orange https://orangedatamining.com/, sof-
tware libre de data mining Knime https://www.knime.com/knime-analytics-platform 
o bien el software de análisis estadístico de datos SPSS, que puede utilizarse desde 

https://orangedatamining.com/
https://www.knime.com/knime-analytics-platform
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UBULabs. Relativo a las bases de datos se pueden utilizar las bases de datos del pro-
yecto financiado por la Agencia Nacional de Investigación SmartLearnUni que están 
publicadas en acceso abierto en el Repositorio de la Universidad de Burgos http://
hdl.handle.net/10259/10197.

http://hdl.handle.net/10259/10197
http://hdl.handle.net/10259/10197
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