Engineers & STEM para profesores: Ingenieros y desarrollos sociales, científicos y tecnológicos muy conocidos / Engineers and well-known social, scientific and technological developments / Engenheiros e desenvolvimentos sociais, científicos e tecnológicos bem conhecidos / Ingénieurs et développements sociaux, scientifiques et technologiques bien connus

Authors

Natalia Muñoz Rujas
Universidad de Burgos
https://orcid.org/0000-0003-2185-1392
Ana Pavani
Pontifícia Universidade Católica do Rio de Janeiro (BRAZIL)
https://orcid.org/0000-0003-1410-3345
Fatima E. M’Hamdi Alaoui
Université Abdelmalek Esaadi, Tétouan (MOROCCO)
https://orcid.org/0000-0001-7443-6796
Eduardo A. Montero García
Universidad de Burgos
https://orcid.org/0000-0001-9948-3767

Keywords:

STEM education, open educational resources, engineers, teachers

Synopsis

The project Engineers & STEM (https://projects.merlot.org/engineers&stem) is a free and open tool for teachers to explain facts and realizations that link common uses of society and engineering practices. Its aim is to contribute to STEM (science technology, engineering, and mathematics) promotion worldwide by highlighting the role of engineer’s contribution to the creation of well-known social, scientific, and technological developments. The website Engineers & STEM is the main result of the project and is available at MERLOT (www.merlot.org), an open educational resources repository. The materials provide a set of case studies that can be used for classroom assignments or open discussion within the frame of any STEM education program.

Downloads

Download data is not yet available.

Abstract 30

References

Gopalakrishnan, K.V. (2009). James Watt: Father of steam power. Resonance 14, 522–529. https://doi.org/10.1007/s12045-009-0062-0

Hills, R. L. (1996). The origins of James Watt’s perfect engine, Transactions of the Newcomen Society, 68, 85-107. https://doi.org/10.1179/tns.1996.004

Jones, P. M. (2011). Becoming an engineer in industrialising Great Britain circa 1760–1820. Engineering Studies, 3(3), 215–232. https://doi.org/10.1080/19378629.2011.618187

de Lorenzo Pardo, J.A. (1998), La revolución del metro, Celeste ediciones, Madrid.

Marsden, B. (2002). Watt’s perfect Engine, Icon Books, Cambridge, U.K.

Stevenson, R., Wassersug, R. (1993). Horsepower from a horse. Nature, 364, 195. https://doi.org/10.1038/364195a0

Bureau Internationale des Poids et Mesures. [acceso 26/6/2024]. https://www.bipm.org/en/home

Giunta, C. (2019). Watt’s in a name? Units of power and energy. Substantia, 3(2), 13–26. https://doi.org/10.13128/Substantia-403

König, W. (2023). William Siemens: An Engineer and Industrialist in Germany and England. In: Glückler, J., Winch, C., Punstein, A.M. (eds) Professions and Proficiency. Knowledge and Space, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-24910-5_10

Stack Exchange Network/History of Science and Mathematics. When are units that are named after persons given their names? [acceso 26/6/2024]. https://hsm.stackexchange.com/questions/3027/when-are-units-that-are-named-after-persons-given-their-names

Thurston, R. H. (1884). Sir Charles William Siemens. Science, 3(49), 34–36. https://doi.org/10.1126/science.ns-3.49.34

Marsden, B. (2013). Ranking Rankine: W. J. M. Rankine (1820–72) and the making of ‘engineering science’ revisited. History of Science, 51(4), 434-456. https://doi.org/10.1177/007327531305100403

Raman, V.V. (1973). William John Macquorn Rankine: 1820-1872. Journal of Chemical Education, 50(4), 274-276. https://doi.org/10.1021/ed050p274

Rankine, W. (1859) Steam Engine and Other Prime Movers, University of Glasgow. [Internet Archive, acceso 26/6/2024] https://archive.org/details/amanualsteameng03rankgoog/page/228/mode/2up

Sutherland, H. B. (1999). Professor William John Macquorn Rankine. Proceedings of the Institution of Civil Engineers - Civil Engineering, 132(4), 181-187. https://doi.org/10.1680/icien.1999.31921

Bähr, J. (2016). Werner von Siemens. Siemens Historical Institute, Berlin. [acceso 26/6/2024] https://assets.new.siemens.com/siemens/assets/api/uuid:79526895df552002ded8cf62384d6c72f155d7e4/2016-lifelines-werner-von-siemens-web.pdf

Kennelly, A. E. (1935). IEC Adopts MKS System of Units. Electrical Engineering, 54(12), 1373-1384. https://doi.org/10.1109/EE.1935.6538821

Siemens, W. (1861). III. Proposal for a new reproducible standard measure of resistance to galvanic currents. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(137), 25-38. https://doi.org/10.1080/14786446108643006

The Institution of Civil Engineers. (1884). The Practical Applications of Electricity: A Series of Lectures Delivered at the Institution of Civil Engineers, Session 1882-83. London. [Internet Archive, acceso 26/6/2024] https://archive.org/details/practicalapplic00bramgoog/page/n6/mode/2up?q=mho

Aerodinamique Eiffel. Histoire du laboratoire. [acceso 26/6/2024] https://www.aerodynamiqueeiffel.fr/a-propos/histoire-du-laboratoire/

Black, J. (1990). Gustave Eiffel, pioneer of experimental aerodynamics. The Aeronautical Journal, 94(937), 231–244. https://doi.org/10.1017/S0001924000022971

Castellaro, S., Perricone, L., Bartolomei, M. Isani, S. (2017). Dynamic Characterization of the Eiffel Tower. Procedia Engineering 199, 3332–3337. https://doi.org/10.1016/j.proeng.2017.09.461

Chanetz, B., Peter, M. (2013). Gustave Eiffel, a pioneer of aerodynamics. International Journal of Engineering Systems Modelling and Simulation, 5(1-3), 3-7.

Eiffel, G. (1910). La résistance de l’air et l’aviation. Dunod et Pinat Editeurs, Paris. [Internet Archive, acceso 26/6/2024] https://archive.org/details/EiffelLaRsistanceDeLairEtLaviation1910

Eiffel G. (1911). Brevet d’invention nº 436.934. Disposition d’un laboratoire d’essais pour modèles d’aéroplanes ou hélices. Office National de la Propriété Industrielle, République Française.

Ellis, J., Tahiani, C. (1987). Patents of Gustave Eiffel. Journal of Structural Engineering, 113(3), 546-556. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:3(546)

Anónimo. (1928). Alfred Nobel, inventor of dynamite. Journal Chemical Education, 5(11), 1480. https://pubs.acs.org/doi/10.1021/ed005p1480

Alfred Nobel’s patents. (Acceso 24/7/2024] https://www.nobelprize.org/alfred-nobel/list-of-alfred-nobels-patents/

Boutillier, S. ( 2018). Industrialist and inventor: Alfred Nobel’s dynamite invention. In Science, Technology and Innovation Culture, 61–79, by Marianne Chouteau, Joëlle Forest and Céline Nguyen (Eds.) John Wiley & Sons. https://doi.org/10.1002/9781119549666.ch4

Nicholls, M. (2019). Alfred Nobel founder of Nobel Prize. European Heart Journal, 40(17), 1315–1317. https://doi.org/10.1093/eurheartj/ehz247

Ringertz, N. (2001). Alfred Nobel — his life and work. Nature Reviews Molecular Cell Biology 2, 925–928. https://doi.org/10.1038/35103029

Gómez-Jauregui, V., Gutiérrez-García, A., González-Redondo, F. A., Iglesias, M., Manchado, C. Otero, C. (2022). Torres Quevedo's mechanical calculator for second-degree equations with complex coefficients. Mechanism and Machine Theory, 172, 104830. https://doi.org/10.1016/j.mechmachtheory.2022.104830

González de Posada, F., González Redondo, F. A., Redondo Alvarado, M. D. (2002). Leonardo Torres Quevedo and the ballooning | Leonardo Torres Quevedo y la aerostación. Revista de Obras Públicas, 149(3423), 55-66.

González de Posada, F., González Redondo, F. A., Hernando González, A. (2021). Leonardo Torres Quevedo: Pioneer of Computing, Automatics, and Artificial Intelligence. IEEE Annals of the History of Computing, 43(3), 22-43. https://doi.org/10.1109/MAHC.2021.3082199

Rui-Wamba Martija, J., Sáenz Ridruejo, F. (1995). En torno a Leonardo Torres Quevedo y el transbordador del Niágara. Fundación Esteyco, Madrid.

Pérez-Yuste, A. (2008). Early Developments of Wireless Remote Control: The Telekino of Torres-Quevedo. Proceedings of the IEEE, 96(1), 186-190. https://doi.org/10.1109/JPROC.2007.909931

Pérez Yuste, A., Salazar Palma, M. (2005). Scanning Our Past from Madrid: Leonardo Torres Quevedo. Proceedings of the IEEE, 93(7), 1379-1382. https://doi.org/10.1109/JPROC.2005.851230

Torres Quevedo, L. (2003). Ensayos sobre automática. Su definición, Extensión teórica de sus aplicaciones. Limbo: boletín internacional de estudios sobre Santayana, 17, 9-32.

Dirik, M. (2020). Al-Jazari: The Ingenious Inventor of Cybernetics and Robotics. Journal of Soft Computing and Artificial Intelligence, 1 (1), 47-58.

Hill, D. R. (1974). The Book of Knowledge of Ingenious Mechanical Devices by Ibn al-Razzaz al Jazari. Reidel Publishing Company, Dordrecht, Holland. [Internet Archive, acceso 27/7/2024] https://archive.org/details/cover_20200113_2057/page/n1/mode/2up

Hill, D. R. (1991). Mechanical Engineering in the Medieval Near East. Scientific American, 264(5), 100-105. https://doi.org/10.1038/scientificamerican0591-100

Sánchez Martín F.M., Millán Rodríguez F., Salvador Bayarri J., Palou Redorta J., Rodríguez Escovar F., Esquena Fernández S., Villavicencio Mavrich H. (2007). Historia de la robótica: de Arquitas de Tarento al robot Da Vinci (Parte I). Actas Urológicas Españolas, 31(2), 69-76. https://doi.org/10.1016/S0210-4806(07)73602-1

Sánchez Martín F.M., Millán Rodríguez F., Salvador Bayarri J., Palou Redorta J., Rodríguez Escovar F., Esquena Fernández S., Villavicencio Mavrich H.(2007). Historia de la robótica: de Arquitas de Tarento al robot Da Vinci (Parte II). Actas Urológicas Españolas, 31(3), 185-196. https://doi.org/10.1016/S0210-4806(07)73624-0

Tatnall, A., Davey, B. (2016). Towards Machine Independence: From Mechanically Programmed Devices to the Internet of Things. In Tatnall, A., Leslie, C. (Eds) International Communities of Invention and Innovation HC 2016. IFIP Advances in Information and Communication Technology, 491, 87-100. Springer, Cham. https://doi.org/10.1007/978-3-319-49463-0_6

Dickinson, H. (1947). Tercentenary of Denis Papin. Nature 160, 422–423. https://doi.org/10.1038/160422a0

Freudenthal, G. (2002). Perpetuum mobile: the Leibniz-Papin controversy. Studies in History and Philosophy of Science Part A, 33(3), 573-637. https://doi.org/10.1016/S0039-3681(01)00040-1

Hollister-Short, G. (2010). The Formation of Knowledge Concerning Atmospheric Pressure and Steam Power in Europe from Aleotti (1589) to Papin (1690). History of Technology, 25, 137–150.

Robinson, H. W. (1947). Denis Papin (1647-1712). Notes and Records of the Royal Society of London, 5(1), 47-50. https://doi.org/10.1098/rsnr.1947.0007

Storni M. (2021). Denis Papin’s digester and its eighteenth-century European circulation. The British Journal for the History of Science, 54(4), 443-463. https://doi.org/doi:10.1017/S0007087421000698

Sullivan De Oliveira, P. L. (2022). Transforming a Brazilian Aeronaut into a French Hero: Celebrity, Spectacle, and Technological Cosmopolitanism in the Turn-of-the-Century Atlantic, Past & Present, 254(1), 235–275. https://doi.org/10.1093/pastj/gtab011

Soppelsa, P., Stein, B. (2013). Santos-Dumont's Blimp Passes the Eiffel Tower. Technology and Culture 54(4), 942-946. https://doi.org/10.1353/tech.2013.0147

Abdalla, A. M., Catalano, F. M., (2012). Influence of demoiselle aircraft on light and general aviation design. 28th Congress of the International Council of the Aeronautical Sciences 2012, 1, 549-555. [Acceso 15/08/2024] https://www.academia.edu/7435461/THE_INFLUENCE_OF_DEMOISELLE_AIRCRAFT_ON_LIGHT_AND_GENERAL_AVIATION_DESIGN

Greco P., Catalano, F. Souto, A., Ribeiro, M., Gloria, R. (2003). Historical review and analysis of Santos Dumont's 14-BIS. 41st Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2003-99

Visoni, R. M. (2009). How Santos Dumont invented the airplane | Como Santos Dumont inventou o avião. Revista brasileira de ensino de física , 31(3), 3605.1-3605.6. https://doi.org/10.1590/S1806-11172009000300015

Brady, S. (2015). The Brooklyn bridge: Tragedy overcome (part 1). Structural Engineer, 93(3), 28-30. https://doi.org/10.56330/MHFI7968

Brady, S. (2015). The Brooklyn bridge: Tragedy overcome (part 2). Structural Engineer, 2015, 93(4), 26-28. https://doi.org/10.56330/KKFA5096

Galloway, P. D., (1996). So Mrs. Roebling - what's your side of the story - about the Brooklyn Bridge? In Civil Engineering History: Engineers Make History, Jerry R. Rogers, Donald Kennon, Robert T. Jaske, Francis E. Griggs, Jr. (Eds), Proceedings of the First National Symposium on Civil Engineering History, 23-24. American Society of Civil Engineers, New York, NY. [Internet Archive, acceso 27/7/2024] https://archive.org/details/civilengineering0000nati/page/n5/mode/2up

Matthews, A. T. (1984). Emily W. Roebling: One of the Builders of the Bridge. Annals of the New York Academy of Sciences, 424(1), 63-70. https://doi.org/10.1111/j.1749-6632.1984.tb23490.x

Cubierta "Engineers & STEM para profesores: Ingenieros y desarrollos sociales, científicos y tecnológicos muy conocidos / Engineers and well-known social, scientific and technological developments / Engenheiros e desenvolvimentos sociais, científicos e tecnológicos bem conhecidos / Ingénieurs et développements sociaux, scientifiques et technologiques bien connus""

Published

January 20, 2025
Supporting Agencies
This project has been promoted by the digital library MERLOT (Multimedia Education Resource for Learning and Online Teaching, www.merlot.org ) of the California State University in the United States.

Details about this monograph

ISBN-13 (15)

978-84-18465-96-3

Date of first publication (11)

2025-01-20